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Abstract

In this short note, we describe an information aggregation mechanism that can be
used by players before playing a game of strategic complementarities under incomplete
information. In such a game, players may have an incentive to share overly optimistic
information with others, thereby inducing them to take higher actions. In this mecha-
nism, players trade a token before playing the game. Players who wish to communicate
good news must purchase this worthless token and burn resources. The note shows
that players only need to observe the market-clearing price that arises from the to-
ken trades to aggregate their private information. Each element in a player’s private
information set is encoded as a prime number in the prime factorization of the market-
clearing price. The element contained in every player’s information set is identified as
the prime with the highest multiplicity.

1 Introduction

In this short note, we describe an information aggregation mechanism that can be used by
players before playing a game of strategic complementarities under incomplete information.
In such a game, players may have an incentive to share overly optimistic information with
other players, thus inducing them to play higher actions. In this mechanism, players trade
a token before playing the game. Players who want to communicate good news must pur-
chase this worthless token and burn resources. The note shows that players only need to
observe the market clearing price that arises from the token trades to aggregate their private
information. Each element in a player’s private information set is encoded as a prime in
the prime factorization of the market clearing price. The element that is contained in every
player’s information set is identified as the prime with the highest multiplicity.

For early-stage start-ups, incomplete information about the future returns of the start-
up is an important friction in the fundraising process. Different investors have different
beliefs about the quality of the start-up, different beliefs about how investors will evaluate
the quality of the start-up, and possibly even different beliefs about those beliefs and so on.
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Moreover, if the future profits of the project exhibit some form of strategic complementari-
ties, agents have the incentive to misreport what they know: If an agent believes the project
to be just weakly above average quality, she may exaggerate her beliefs about the quality of
the project so that other investors over-invest into the project. Indeed, over-investment of
other agents weakly raises her returns. We see that information aggregation in this context
requires a more complicated mechanism, where optimistic reports that are meant to increase
the aggregate level of investment become costly. The simplest information aggregation mech-
anism is a public message board, where posting information is free and agents take turns
reporting what they know. This cannot be used to incentivize information aggregation. In
this note we propose a token trading protocol that achieve this.

1.1 Model

Consider a set I of n ∈ N agents, where each i ∈ I is endowed with a cash endowment bi ∈ R
that enters her preferences in a quasi-linear way. Agents decide how much to invest into a
project whose payoffs exhibit strategic complementarities. Returns of this investment game
depend on an unknown quality parameter θ ∈ Θ := Z. The investment game is described as
follows: Each player chooses a level of investment yi ≥ 0. Given a profile of actions y = (yi)i
and a quality parameter θ ∈ Θ, agent i’s payoffs are given by

U(y, θ, bi) = u(y, θ) + bi. (1.1)

where u is smooth, strictly concave and supermodular with bounded derivatives. We assume
that U is such that for every θ, (bi)i, the complete information game with payoffs U(·) and
actions y = (yi)i has a unique pure strategy Nash equilibrium where at least one player
invests a positive amount, denoted y∗(θ, (bj)j) = (y∗i (θ, (bj)j))i. We also assume that U is
such that y∗ is strictly increasing and strictly concave with bounded derivatives. In addition,
zero investment is always assumed to be a Nash equilibrium. We will later require that these
functions be sufficiently concave.

Information Players’ private information is given by an improper, uniform prior ϕ on Θ
and private signals s = (si)i, where for every player i, the signal si is obtained as follows:

si = θ + ϵi, (1.2)

where for every i, the noise term ϵi is drawn independently of θ and independently across
players from a uniform distribution νi ∈ ∆(Z) with finite support and mean zero. The
tuple of (νi)i thus describes a Bayesian game, where players’ beliefs about θ are uniformly
distributed on some interval. We denote the associated posterior beliefs of player i about θ ,
conditional on observing signal si by µi(·|si). The improper distribution on tuples (θ, (si)i)
is denoted by µ.

We say that (νi)i satisfy the aggregate consensus property if the following condition holds:
For every (θ, (si)i) in the support of µ,⋂

i∈I

{θ′ ∈ Θ : µi(θ|si) > 0} = {θ}. (1.3)
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Suppose the noise term satisfies ϵi ∈ {−4, . . . , 0, . . . , 4}. With some abuse of notation, we
will denote the first-order beliefs of agent i upon observing si with µ(·|si). The distribution
on signals si conditional on θ for the three agents is summarized below:

Signals given θ
Signals: θ−4 θ−3 θ−2 θ−1 θ θ+1 θ+2 θ+3 θ+4
Signal distribu-
tion i1:

0 0 0 1/3 1/3 1/3 0 0 0

Signal distribu-
tion i2:

0 0 1/3 0 1/3 0 1/3 0 0

Signal distribu-
tion i3:

1/5 1/5 0 0 1/5 0 0 1/5 1/5

Figure 1: Signal distributions for agents i1, i2 and i3 conditional on the true state being θ.

So if agent i1 observes signal s1, she knows θ ∈ {s1 − 1, s1, s1 + 1}. She also knows that
if θ = s1 − 1, say, then i2’ signal is contained in {s1 − 3, s1 − 1, s1 + 1}. If s2 = s1 − 1, then
i2 knows that θ ∈ {s1 − 3, s1 − 1, s1 + 1}. In this case, agents i1 and i2 would not learn the
state if they were to reveal the support of their beliefs. Both agents can only narrow the
state down to either s1 − 1 or s1 + 1. Note that if θ = s1 − 1, then i3 knows that θ ̸= s1 + 1
no matter which of her signals she observed. So all three agents can learn the state if they
manage to credibly communicate the support of their first-order beliefs. It can be verified
that this is true for any state and any draw of the signals. So the beliefs described above
satisfy the consensus condition.

Information Aggregation Mechanism Suppose that agents participate in a mechanism
after they received their private signals but before they have to make their investment choices.
The mechanism considered in this note is a special kind of mechanism. Suppose all agents are
endowed with a large number of worthless tokens. An information aggregation mechanism
consists of a token market. Every agent i reports a demand or supply schedule di for tokens
p 7→ di(p), where di(·) takes as argument a positive price per token and maps it to a number
of tokens. If the amount is positive, di(p) represents a demand for tokens. If the amount is
negative it represents a supply of tokens. For every profile of demand/supply schedules, let
the public signal be given by a market clearing price1, i.e. a number p∗ > 0 so that∑

i∈I

di(p
∗) = 0. (1.4)

At every round, agents effectively submit demand/supply schedules for tokens and observe
the resulting market price of a token. Then agents pay or receive payment for tokens in units
of endowment as dictated by their submitted demand/supply schedules and the market price.
Hence transfers given d = (di)i, p take the form

τ(di, d) := −p∗di(p
∗). (1.5)

1When multiple such prices exist we consider any selection rule defined on the aggregate schedules∑
i∈I di(·). If no market clearing price exists, set p to zero.
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Agents choose their reported demand/supply schedule di as a function of their private signal
si. A strategy in the aggregation mechanism is then denoted si 7→ di(·|si). We say that
information has been aggregated if for every (θ, s = (si)i) in the support of µ,

Pr(θ|si, p∗) = 1, ∀ i. (1.6)

In the above expression, p∗ is the value of the market clearing price and strategies are common
knowledge. Note that no agent needs to condition on their own strategy di(·|si) to deduce
the true state, the price and her private signal are enough.

Agents choose their strategy in the extended, two-period game, which consists of a strat-
egy in the aggregation mechanism si 7→ di(·|si) and an investment strategy (si, p

∗) 7→
yi(si, p

∗) ≥ 0. Agent i’s expected payoff before the trades, given a strategy (di, yi)i, is
given by

Ui(si, y, d) := E(u(y(s))θ + bi − p∗di(p
∗|si)|si) (1.7)

and expected payoffs after trade, but before the investment game:

U∗
i (si, y, d, p

∗) := E(u(y(s))θ + bi − p∗di(p
∗|si)|si, p∗). (1.8)

A Bayes-Nash equilibrium of this game consists of a strategy profile (di, yi)i so that for every
player i and every signal si, (di, yi) maximizes U∗

i above given (d−i, y−i).

2 The Mechanism

We now provide an explicit strategy for every agent i which is a Bayes Nash equilibrium of
the game and aggregates information. For every m ∈ N>0, let Pm denote the m-th prime
number. That is P1 = 2, P2 = 3, P3 = 5 etc... Fix any increaseing function f : N → N and
let ρf : Θ → N be defined as follows

ρf (θ) :=

{
P1, if θ ≤ 1

Pf(θ), otherwise.
(2.1)

We then propose the following strategy (di, yi)i for any given α > 0:

(i) For every si, define the associated demand/supply schedule for player i under signal si

di(p|si) =
αn

p

∑
θ:µi(θ|si)>0

log(ρf (θ))− 1. (2.2)

The market clearing price p∗ associated to a signal profile s = (si)i satisfies

αn

p∗

∑
i∈I

∑
θ:µi(θ|si)>0

log(ρf (θ))− n = 0

α
∑
i∈I

∑
θ:µi(θ|si)>0

log(ρf (θ)) = p∗
(2.3)
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We now verify that d = (di)i aggregates information: Indeed, upon seeing p∗, each
agent can perform the following computation:

exp

(
p∗

α

)
= exp

∑
i∈I

∑
θ:µi(θ|si)>0

log(ρf (θ))


=

∏
θ:∃ i s.t. µi(θ|si)>0

ρf (θ)
η(θ),

(2.4)

where for every θ ∈ Θ, η(θ) is the number of agents whose information set contains θ,

η(θ) := |{i ∈ I : µi(θ|si) > 0}|. (2.5)

Assuming that every agent can compute the prime factorization of exp(p∗), the ag-
gregate consensus property implies that for any drawn tuple (θ∗, s = (si)i) we have
that

η(θ∗) > η(θ), ∀ θ ̸= θ∗. (2.6)

Hence information is aggregated.

(ii) Let d = (di)i, as defined above, be played during the information aggregation mech-
anism stage, and let the associated market clearing price p∗ reveal state θ∗. We
then consider an investment strategy y = (yi : (si, p

∗) 7→ yi(si, p
∗) = yi(p

∗))i, which
is independent of each player’s private signal si and let y be the Nash equilibrium
y∗(θ∗, (bi − p∗di(p

∗))i) of the complete information game with payoffs

U(y, θ∗, bi − p∗di(p
∗)). (2.7)

Moreover, we assume that if a prime factorization that is inconsistent with the infor-
mation structure is observed, each agent invests zero.

We now check that no agent has an incentive to deviate during the information aggregation
stage. Suppose agent i observes signal si. Reporting a higher information set means buying
more tokens and may increase the consensus state that results from the market clearing price.
Conversely, reporting a lower information is cheaper during the information aggregation stage
but might result in a more pessimistic consensus.

A demand schedule d′i(·) is more optimistic than di(·|si) if there exists Θ′ ⊆ Θ containing
some θ > 2, which is also greater then Θ(si) := {θ : µi(θ|si > 0} in the weak set order: 1)
For every θ ∈ Θ(si) there exists θ′ ∈ Θ′ so that θ ≤ θ′ and 2) For every θ′ ∈ Θ′ there exists
θ ∈ Θ(si) so that θ ≤ θ′. Symmetrically, a demand schedule d′i(·) is more pessimistic than
di(·|si) if there exists Θ′ ⊆ Θ, so that Θ(si) is greater than Θ′ in the weak set order.

Suppose first that an agent reports a demand schedule d′i(·) that is strictly more optimistic
than the prescribed demand schedule di(·|si). The additional cost is bounded from below by

p′∗d′i(p
′∗)− p∗di(p

∗|si) > cf (si) := αn min
θ∈Θ(si)

(log(ρf (θ + 1))− log(ρf (θ))), (2.8)

where p∗ is the price that results from the demand profile d and p′∗ is the price resulting from
player i’s deviation. The Betrand-Chebyshev Theorem states that for any l ∈ N there is a
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prime number contained in [l, 2l]. Hence, we can find a strictly increasing function f : N → N
so that for every θ ∈ N,

log(ρf (θ)) ∈ ((θ − 1) log(2), θ log(2)]. (2.9)

Hence log primes can be used to span an approximately even grid. Hence, there is a choice
of f so that

cf (si) ≥ αn log(2). (2.10)

Let Θ(si) denote the set of possible states that could arise as consensus with positive
probability:

Θ(si) :=
⋃

s−i:µ(si,s−i)>0

⋃
j ̸=i

Θj(sj). (2.11)

The set Θ(si) is finite and its cardinality is bounded uniformly by M for all signals si. Since
agents invest zero if they see a prime factorization that is inconsistent with the information
structure and information sets have finite size independent of the realized signals, no devia-
tion encoding elements outside of Θ(si) could ever be profitable. In the best case scenario,
information aggregation after a deviation leads agents to the (possibly incorrect) consen-
sus θ := maxΘ(si). Let θ := minΘ(si). Then the payoff gains from deviating to a more
optimistic demand schedule under state θ∗ is bounded from above by(

max
yi≥0

u(yi, y
∗
−i(θ, (b

∗
j + log(2))j ̸=i), θ

∗)− u(y∗(θ), (b∗j)j, θ
∗)

)
− n log(2), (2.12)

where b
∗
j and b∗j are the highest and (resp.) lowest possible post-trade endowment for

agent j given si if d is followed:

b
∗
j := max

s−i:µ(si,s−i)>0
(bj − τ(dj(sj), d−j(s−j)).

b∗j := min
s−i:µ(si,s−i)>0

(bj − τ(dj(sj), d−j(s−j)).
(2.13)

By the bounds above we have that there exists M so that for all signals si,

|b∗j − b∗j | ≤ M,

|θ − θ| ≤ M.
(2.14)

We will thus assume that u and y∗ be sufficiently concave with bounded derivatives, so that
there exists a constant L ∈ (0, 1) so that for all endowments b all θ ∈ Θ

|u(y∗(θ +M, (bj +M + log(2))j), bi, θ +M)− u(y∗(θ, b), bi, θ)| ≤ Ln log(2). (2.15)

We conclude that a deviation towards a more optimistic demand schedule is never profitable.
Similarly, a symmetric argument shows that deviating to a less optimistic demand schedule
is not profitable. Finally, by concavity, no mixture of a optimistic and a pessimistic deviation
would ever be optimal.
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3 Discussion

3.1 Natural Encryption

Note that the equilibrium described above naturally encrypts the state whenever factoring
a number into its basis elements is costly. For an outside observer without any private
information about the state, the factorization can be made arbitrarily costly when using the
protocol we introduced earlier by varying f . Agents who participate in the mechanism know
which primes they have used in the encoding. Under a factorization cost, this mechanism
seems more suitable for information aggregation among well informed experts. That is agents
who already know a lot but also care a lot about aggregating their information without
revealing their information to ignorant outsiders.

3.2 Related Literature

Information aggregation has been studied mostly in the context of auctions and competitive
markets to provide micro-foundations for rational expectation equilibria Milgrom (1981);
Reny and Perry (2006); Grossman and Stiglitz (1976); Siga and Mihm (2021). By contrast,
in this paper, we view information aggregation from a mechanism design perspective. We
want to design a mechanism whose sole purpose is to eliminate or reduce the friction of
incomplete information when playing an investment game. Our mechanism should ideally
be an add-on to investment projects in a broad class of different environments.

There is also a literature Kyle (1985); Vives (2014); Lambert et al. (2014) on information
aggregation where traders submit monotone demand (or supply) schedules. This strand is
close in spirit to our paper as it studies markets with strategic traders who receive private
information and a market maker who determines prices. Like in our mechanism, trading
is dynamic and information revelation occurs over time. In our mechanism, the message
space is also given by demand/supply schedules. However, the asset being traded here has
no intrinsic value.

Since we are focusing on supermodular investment games, we also relate to a larger liter-
ature on information frictions in coordination games. Examples like global games Carlsson
and Van Damme (1993) and the Email game Rubinstein (1989) have shown that incomplete
information can have dramatic consequences on the outcomes of such coordination games.
Applications include currency attacks, and bank runs but also simple investment problems
Morris and Shin (2003). Our mechanism can be viewed as a general tool to reduce these prob-
lems through mechanism design. However, we want those tools to find applications beyond
the scope of two-player binary action supermodular games with global game information
structures.

From this angle, a related paper is Angeletos and Werning (2006), where a financial
market is used to prevent the global game selection that is introduced by perturbing private
information of agents in a large economy. In their set-up, a public but noisy signal that results
from the market price of an asset is used as a device to facilitate coordination - which is
eliminated in a global games information structure. Their mechanism is tailored to the class
of information structures that yield the global game selection, which applies mainly to two-
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player binary-action super-modular games2. In this paper, we take the role of information
aggregation more literally and require the trading mechanism to yield a consensus. An
important feature with many-action supermodular games is that agents have an incentive
to exaggerate moderately good news: If agent i knows that the state is good but not great,
revealing this to other agents only results in moderate investment levels. If instead, she
could convince others that the state is great, this would incentivize other agents to provide
much higher investment levels, which in turn benefits i. When there are only two actions,
The state is either too low to invest (even if all other players invest) or it is high enough, in
which case full investment is an equilibrium anyway.
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