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Abstract

We provide a strategic foundation for information: in any given
game with incomplete information we define strategic quotients as in-
formation representations that are sufficient for players to compute
best-responses to other players. We prove 1/ existence and essential
uniqueness of a minimal strategic quotient called the Strategic Type
Space (STS) in which a type is given by an interim correlated rational-
izability hierarchy together with the set of beliefs over other players’
types and nature that rationalize this hierarchy 2/ that this minimal
STS is a quotient of the universal type space and 3/ that the minimal
STS has a recursive structure that is captured by a finite automaton.

1 Introduction

For games of incomplete information, Harsanyi (1967) introduced type spaces
as models to describe players’ information on uncertain payoff-relevant pa-
rameters (i.e. states of nature), where each type is associated to a belief on

∗The authors are grateful to Marcin Pȩski, Stephen Morris, Satoru Takahashi,
Muhamet Yildiz and several participants of the Transatlantic Theory Workshop, the Stony
Brook conference in Game Theory, the Institut Henri Poincaré Game Theory seminar, the
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states of nature and other players’ types. Mertens and Zamir (1985) show
that these type spaces can be represented in canonical models (universal type
spaces) of players’ hierarchies of beliefs, whose descriptions do not depend on
the payoff structure of a game. Universal types should then contain payoff
relevant information for all games and so become very large objects.

This paper takes back the question of how to describe players’ information
by taking a game as fixed. We provide a universal representation of players’
payoff relevant information by switching the focus from a purely informa-
tional description of types to a strategic description. For a fixed game, we
introduce strategic quotients as descriptions of players’ strategic information,
which allow for an economical representation of every Harsanyi type space.

In our approach, an economical representation of a Harsanyi type space is
obtained by mapping its types and associated beliefs into equivalence classes.
A strategic quotient is a canonical set of such equivalence classes, called
strategic types, which satisfies the following two conditions for every player
i:

1. For any Harsanyi type space, if two of player i’s types have same beliefs
on nature and strategic types of other players, then these types belong
to the same strategic type of player i.

2. If other player’s behaviors depend only on their strategic types, there
exists a best-response of player i that depends only on i’s strategic
type.

The first is a sufficient condition for different Harsanyi types to be merged
into the same strategic type. Unlike Harsanyi (1967), we do not require the
converse of this condition. We thus allow for different beliefs over states and
other players’ strategic types to correspond to the same strategic type, so
that strategic quotients partition Harsanyi type spaces. The second condition
depends on a best-reply concept and the meaning of strategic behavior. We
focus on the best-reply correspondence that underlies the solution concept
of interim correlated rationalizability (ICR), as defined in Dekel, Fudenberg,
and Morris (2007). This condition implies that strategic quotients cannot be
too coarse, as they must be closed under best-replies.

An example of a strategic quotient for any game is the universal type
space of Mertens and Zamir (1985), and we show that every strategic quo-
tient is a quotient of the universal type space. Since we are interested in
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economical information representations, we want to focus on strategic quo-
tient that are the smallest, or coarsest. We prove existence and uniqueness
of a minimal strategic quotient which we call the strategic type space (STS).
We show this by first proving that all finite order ICR actions arising from
any Harsanyi type can be recovered from any Strategic Quotient. We then
provide a canonical construction of the set of best-reply hierarchies and show
that it forms a STS when each type is associated to the set of beliefs that
rationalize it as a best-response. We show that these hierarchies characterize
all finite order ICR actions and deduce that our construction characterizes a
unique STS up to isomorphisms.

We then analyze properties of the STS. Through careful exploration of
the recursive structure underlying our construction of the STS, we show that
ICR hierarchies exhibit a finite recursive structure. More precisely, we show
the existence of a finite automaton associated to the underlying game, called
the strategic automaton, such that ICR hierarchies are 1-1 with the set of
paths on the automaton. This characterization allows us to further deduce
that the STS is a compact and Hausdorff space when endowed with the
product topology on ICR hierarchies. As an application of our approach, in
a companion paper Gossner and Veiel (2024) we use the recursive structure to
characterize the set of implementable distributions under interim correlated
rationalizability.

1.1 Related Literature

The best-reply concept we focus on in this paper was introduced to define In-
terim correlated rationalizability (ICR). Rationalizability was introduced by
Bernheim (1984); Pearce (1984) in games with complete information. Dekel
et al. (2007) generalized this concept by introducing the concept of ICR for
games of incomplete information. For every type, ICR iteratively eliminates
never best-replies to that type’s expectation over any state contingent, cor-
related beliefs over other types’ actions.

Dekel et al. (2007) show that two Harsanyi types have the same ICR
actions in all games if and only if they correspond to the same hierarchy
of beliefs and hence the same point in the universal type space of Mertens
and Zamir (1985). Therefore, ICR has been studied as a correspondence on
the universal type space of Mertens and Zamir (1985). Morris, Shin, and
Yildiz (2016) characterizes ICR in terms of a common belief operator on
the universal type space for global games. Weinstein and Yildiz (2007) first
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identified critical types, i.e. points of discontinuity of ICR in the universal
type space of Mertens and Zamir (1985). They provide a topological charac-
terization of critical types. Dekel, Fudenberg, and Morris (2006) and Chen,
Di Tillio, Faingold, and Xiong (2016a) characterize the coarsest topology on
the universal type space, called the strategic topology, under which ICR is
continuous. Chen et al. (2016a) introduce the notion of frames as partitions
of the universal type space similar to the first property of STS. They use
frames as a tool to define a strategic topology of uniform convergence over
games for hierarchies of beliefs. Chen, Takahashi, and Xiong (2014) study
robustness of ICR to both higher order beliefs and payoff perturbations. The
authors define curb collections which is closely related to the second require-
ment of STS, i.e. strategic closure (see Section 3.2), defined in terms of the
universal type space. Chen, Takahashi, and Xiong (2016b) provide an al-
gorithm to compute hierarchies of ICR which parallels our construction of
best reply hierarchies. Based on their construction, they study refinements
on ICR. Finally, Ely and Peski (2011) provide a characterization of critical
types in terms of common belief properties in the universal type space.

Most importantly, this paper differs from the literature described above
in the following way: We fix a game and introduce a canonical language to
describe strategically relevant information for this game. Unlike frames and
curb collections, STS are defined as universal objects which can be charac-
terized and constructed without reference a particular Harsanyi type space.

2 Preliminaries and Notations

We denote the cardinality of a set Y by |Y |. For a family of sets (Xi)i we let
X :=

∏

iXi and X−i :=
∏

j 6=iXj. For a family of mappings fi : Xi → Yi, f is
the map from X to Y given by f(x) = (fi(xi))i and f−i is from X−i to Y−i
is given by f−i(x−i) = (fj(xj))j 6=i. Similarly, if f : X → Y and g : Z → W
are mappings we denote by (f × g) : X × Z → Y ×W the map given by
(f × g)(x, z) = (f(x), g(z)). On any set X we denote by idX the identity
mapping on X and omit the subscript X when there is no ambiguity. The
set of Borel probability measures over a topological space X is written as
∆X . We denote by supp p the support of a probability measure p. The
marginal probability on Y × Xm of a probability measure p on a product
space X = Y ×

∏

iXi is denoted margY,m(p).
In commutative diagrams we describe a mapping between probability
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measures from ∆X to ∆Y which are induced by a measurable mapping from
X to Y by an arrow on the subscripts as follows:

∆X

∆Y

Double headed arrows such as X ։ Y denote surjective mappings. The
subscript i denotes a typical player from the finite set N of players. A finite
set K of states of nature and, finite action sets (Ai)i∈N and a payoff function
u : A×K → R

N , are given.

3 Strategic Type Spaces

In this section we introduce Strategic type spaces (STS). Section 3.1 in-
troduced the best-reply correspondence underlying the concept of Interim
correlated rationalizability. In section 3.2 we introduce STS and minimal
STS axiomatically. In section 3.3 we establish existence and uniqueness of a
minimal STS, characterized as the space of best-reply hierarchies. Section 4
shows that the minimal STS can be represented by a finite automaton.

3.1 Interim Correlated Best-Replies

Dekel et al. (2007) show that ICR can be defined as a fixed point of a best
reply correspondence, which we now state.

We introduce the set Bi := 2Ai of action subsets and define conjectures as
maps σ : K × B−i → ∆(A−i). The probability 〈σ, p〉 over K × A−i induced
by a belief p ∈ ∆K×B−i

and a conjecture σ is given by the relation:

〈σ, p〉(k, a−i) :=
∑

b−i∈B−i

σ(k, b−i)(a−i) p(k, b−i).

Player i’s best-reply correspondence BRi : ∆K×B−i
→ Bi is given by:

BRi(p) :=
⋃

σ:supp σ(k,b−i)⊆b−i, ∀k,b−i







arg max
ai∈Ai

∑

k,a−i

ui(ai, a−i, k)〈σ, p〉(k, a−i)







.
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A Harsanyi type space H consists of a family of topological spaces
(Θi)i∈N and of continuous mappings πi : Θi → ∆K×Θ−i

, where πi(θi) rep-
resents type θi’s belief over types of other players and states of nature.
As in Dekel et al. (2007), we rely on the best-reply correspondence BRi

to define ICR on any Harsanyi type space (Θi, πi)i as follows: ICR of a
type θi is given by ICRi(θi) =

⋂

m ICRm
i (θi), where ICR0

i (θi) = Ai and
ICRm

i (θi) is i’s best response to the πi(θi)-mixtures (i.e. an expectation
∫

Θ−i
σ(k, θ−i)πi(θi)(k, dθ−i)) of all measurable, state and type profile contin-

gent conjectures σ(k, θ−i) ∈ ∆(A−i) whose support is contained in ICRm−1
−i (θ−i)

for all θ−i. We call the sequence (ICRm(θ))m≥0 the ICR-hierarchy of θ.

3.2 Strategic Type Spaces

We define a Strategic Quotient (for ICR) as a pair S = (Si, ψi)i consisting of
an N -tuple of topological spaces Si and continuous maps ψi : ∆K×S−i

→ Si
which satisfy both a type space quotient requirement and a strategic require-
ment.

Definition 3.1 (Type Space Quotient). A space S = (Si, ψi)i is a Type
Space Quotient if, for every Harsanyi type space H = (Θi, πi)i there exist a
family of maps (ηi)i for which the following diagram commutes:

Θi ∆K×Θ−i

Si ∆K×S−i

ηi

πi

η−iid

ψi

Definition 3.1 imposes a sufficient condition for two types of player i to
have the same representation in Si. The two downward pointing arrows on
the right of the diagram coarsen the sigma algebra of every type’s beliefs.
The commutativity of the diagram then requires the following: If the beliefs
of two types θi, θ

′
i coincide on K × S−i, then ηi maps θi and θ

′
i to the same

point in Si. Note that the reverse implication is not required by the diagram.
That is, two types with distinct beliefs on K ×S−i could also be mapped to
the same point in Si.

Thus, in our model, types partition beliefs1. This contrasts with Harsanyi

1Chen et al. (2016a) introduce the notion of “frames” which are partitions of type spaces
that are compatible with the belief structure of the types. Frames are thus a special case
of what we call type space quotients.
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types spaces, where a type is associated uniquely to a belief, and with uni-
versal type spaces, where types and beliefs are homeomorphic. The universal
type space together with the canonical belief maps that associate to each
canonical type the corresponding belief on thet state of nature as well as on
other player’s canonical types is thus a special case of a type space quotient.

Note also that the universal type space is the smallest object onto which
information can be projected through faithful transformations in the sense
of Gossner (2000). By partitioning belief spaces we allow for type space
quotients to capture coarser information than universal type spaces.

The point, Si = {∗} and constant map ψi : ∆K×S−i
→ {∗} is another

example of a type space quotient, for any game. This second example shows
that type space quotients may fail to capture strategically relevant informa-
tion. In our way to introduce a minimality requirement that spaces capture
such information, we now define strategically closed families of behaviors.

Definition 3.2 (Strategic Closure). A strategically closed family of be-
haviors for (S, ψ) is a family Ai for each player i of continuous mappings
αi : Si → Bi such that,

1. Ai contains the constant map equal to Ai

2. for every α−i ∈ A−i, there exists αi ∈ Ai such that the following dia-
gram commutes:

∆K×S−i
Si

∆K×B−i
Bi

α−iid

ψi

αi

BRi

For a given pair (S, ψ), a set Ai consists of correspondences αi which map
points in Si to action sets. As a minimality requirement on Ai point 1 of the
definition imposes that each Ai contains the correspondence si 7→ Ai that
precludes no action, for any si ∈ Si.

In point 2 of the definition, commutativity of the diagram imposes two
requirements. First, for a family A to be strategically closed, the diagram
imposes a measurability requirement on S: It requires beliefs that induce
different best replies to a behavior in A−i to be associated to distinct points
in Si. That is, given any profile α−i ∈ A−i, player i’s best-response corre-
spondence to this profile, seen from ∆K×S−i

to Ai, is in fact Si-measurable.
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Second, any strategically closed family A must be closed under best replies:
A player’s best reply to a profile in Ai, viewed as a correspondence from Si
to Ai is in Ai.

Definition 3.3 (Strategic Quotient). A Strategic Quotient is a type space
quotient (S, ψ) that admits a strategically closed family of behaviors.

As an example, the universal type space together with the canonical maps
is a strategic quotient, for any game: If other players’ strategies are mea-
surable wrt. their canonical types, so is a best-response. The type space
consisting of a single point for each player together with the constant map
is a strategic quotient when there is no uncertainty on nature, as in those
games there is always a constant best-response to constant strategies of the
other players. It is, however, not a strategic quotient for general incomplete
information games. Take for instance the classical electronic mail game (Ru-
binstein, 1989) or the coordination game of Section 4.2. In that game, the
best-response of a player to the other player using either of possible strategies
depends on their belief on nature, hence cannot be captured by a constant
map.

The next definition formalizes the idea that one quotient is smaller than
another one.

Definition 3.4. A space S = (Si, ψi)i is smaller than another space S̃ =
(S̃i, ψ̃i)i if there exist a continuous surjection from S̃ to S so that the following
diagram commutes:

S̃i ∆K×S̃−i

Si ∆K×S−i

ψ̃i

id

ψi

In this definition a type space quotient is smaller than another if the
latter admits a representation of the former. That is, all types in the former
quotient can be obtained by merging types of the latter. The diagram above
requires the following sufficient condition for merging types: If the beliefs of
types in the latter quotient coincide on the smaller quotient then these types
are merged to the same point in the smaller quotient. The definition below
then identifies the minimal strategic quotient according to Definition 3.42.

2Formally, Strategic Quotients form a category whose objects are given by the pairs S
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Definition 3.5 (STS). A strategic quotient is called the strategic type space
(STS) if it is smaller than every strategic quotient.

By Definition 3.2, all strategic quotients must distinguish types which
have different best replies to some strategic behavior. Hence the STS should
merge players’ types whenever these types have identical best replies to all
strategic behaviors from a strategically closed family. It also follows from the
discussion above that a STS must be at most as large as the univeral type
space.

3.3 The Strategic Type Space

In this section we establish existence and essential uniqueness of the STS. We
prove this result by characterizing the STS in terms of ICR hierarchies: First,
we show the ICR hierarchies can be recovered from any Strategic Quotient
(Lemma 3.1). We then provide a construction of Si, the set of best reply
hierarchies for a game. This construction is canonical as it makes no reference
to any Harsanyi type space. We show that these hierarchies coincide with all
ICR hierarchies that can arise in all types in all Harsanyi type spaces (Lemma
3.2). We then construct a map ψi, which associates beliefs to best-reply
hierarchies and prove that the pair (S, ψ) is a Strategic Quotient (Lemma
3.3). We deduce that (S, ψ) is a STS and show that it is essentially unique
(Theorem 3.1).

Our first theorem states that every Strategic Quotient allows to recover
the ICR hierarchies from any Harsanyi type.

Lemma 3.1 (Factorization of ICR). For every strategic quotient (Si, ψi)i
and every m ∈ N, there exists continuous αmi : Si → Bi so that for every
Harsanyi type space (Θi, πi)i and associated maps (ηi)i satisfying the diagram
of Definition 3.1,

ICRm
i (θi) = αmi ◦ ηi(θi), ∀θi ∈ Θi, ∀i ∈ N

The proof of this result, as well as all others, is in the appendix.
We now construct the set S of all hierarchies of best replies. The first

level of the hierarchy is given by a player’s best replies to beliefs on nature
and any opponents’ play. Every subsequent level of a best reply hierarchy is

satisfying strategic closure and whose morphisms are given by diagrams as in Definition
3.4. A minimal strategic quotient is thus a terminal object in the category.
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then obtained by computing best replies to beliefs on nature and lower levels
of best reply hierarchies.

We construct inductively the sets of m-order best reply hierarchies Smi as
m-fold sequences of action set profiles. Let S0

i := {Ai} for every i. Given
Sm−1
i for every i, we define the subset Smi ⊆ Sm−1

i × Bi of sequences of the
form sim = (Ai, b

1
i , . . . , b

m
i ) for which there exists a probability distribution

pi ∈ ∆K×Sm−1

−i
satisfying

BRi(margK,l(pi)) = bl+1
i , ∀ l < m, (3.1)

where margK,l(pi) is the marginal probability of pi on K ×
∏

j 6=i projl(S
m
j ),

where projl denotes the projection on the l-th coordinate. We define the set
of player i’s best reply hierarchies as

Si := {si ∈ BN

i : smi ∈ Smi , ∀ m ∈ N}.

Lemma 3.2 states that the best reply hierarchies S characterize all ICR
hierarchies that can arise in any Harsanyi type space.

Lemma 3.2 (Best-Reply Hierarchies are ICR Hierarchies).

(i) Let sm ∈ Bm, then sm ∈ Sm if and only if there exists a Harsanyi type
space (Θ, π) and a type profile θ ∈ Θ so that sm = (ICRl(θ))l≤m.

(ii) Let s ∈ BN, then s ∈ S if and only if there exists a Harsanyi type space
(Θ, π) and a type profile θ ∈ Θ so that s = (ICRl(θ))l≥0.

For every m ∈ N, we define a beliefs map ψmi : ∆K×Sm−1

−i
→ Smi by

ψmi (pi) := (Ai,BRi(margK,1(pi)), . . . ,BRi(margK,m−1(pi))).

Any belief pi on K × S−i induces, through the projection on the first m
coordinates of Si, a belief pmi on K × Sm−1

−i , thus an element ψmi (p
m
i ) ∈ Smi .

By definition of ψmi , for every l ≤ m, the first l elements of ψmi (p
m
i ) coincide

with ψli(p
l
i). Thus, the sequence (ψmi (p

m
i ))i defines a unique element of Si,

which we denote ψi(pi).
Note that once the set S−i of all other players’ best-reply hierarchies is

known, player i’s best-reply hierarchies are fully characterized by marginal
beliefs and do not depend on correlations across different levels of S−i.

We now specify the topology on the set S. Recall that strategic closure re-
quires the Strategic Quotient to admit a closed family of continuous strategic
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behaviors. By construction, the coordinates of a best-reply hierarchy corre-
spond to a closed family of strategic behaviors. We thus endow S with its
product topology, i.e. the coarsest topology so that all coordinate projections
are continuous. Lemma 3.3 below states that (S, ψ) is a Strategic Quotient
and that S is a topological quotient of the universal type space of Mertens
and Zamir (1985).

Lemma 3.3 (ICR Hierarchies form the STS). (S, ψ) is a strategic quotient.
Moreover, the maps η from the universal type space to S are quotient maps,
i.e. continuous open surjections.

By Lemma 3.1 any finite order ICR hierarchy can be recovered continu-
ously from any quotient space. By Lemma 3.2 the set S coincides with all
ICR hierarchies. Then by Lemma 3.3, (S, ψ) is a Strategic Quotient which
can be recovered from all Strategic Quotients. The product topology then
ensures that (S, ψ) is a quotient which is minimal. As the property of min-
imality is universal, every STS is homeomorphic to S. Theorem 3.1 thus
states existence and essential uniqueness of the STS:

Theorem 3.1 (Existence and Essential Uniqueness of STS).

(i) (S, ψ) is a STS.

(ii) If (S ′, ψ′) and (S ′′, ψ′′) are STS then S ′′ and S ′ are homeomorphic.

4 Finite Representation of STS

For every truncated sequence sm ∈ Sm, define its orbit as:

Om(sm) := {smm, s) ∈ B × BN : (sm, s) ∈ S}. (4.1)

Denote the collection of all orbits

Ω := {Om(sm) : sm ∈ Sm,m ∈ N}. (4.2)

Theorem 4.1. Ω is a finite set.

We break down the proof into six Claims, all proven in Appendix A.2.
Here we provide an overview of the arguments. In order to prove Theorem 4.1,
we will exploit a monotonicity property of BRi according to which beliefs with
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smaller supports (according to stochastic dominance wrt set inclusion) admit
smaller best-response sets: BRi(p) ⊆ BRi(p

′) whenever p can be obtained
from p′ by shifting probability mass from action sets to subsets (see Lemma
A.2 in Appendix A.1). In preparation for using this property, we introduce
the best-response map on sets of sequences for player i, Bi : 2

BN

i → 2B
N

i as
follows

Bi(X) := {ψi(pi) : pi ∈ ∆(K ×X−i)}. (4.3)

Let B(X) :=
∏

iBi(X). Note that by construction, B(S) = S and so for
every subset S ⊆ S, B(S) ⊆ S. B inherits the following monotonicity
property from BR.

Monotonicity. For any X,X ′ ⊆ BN write X ≪ X ′ when the following
two properties hold: 1) For every x ∈ X there exists x′ ∈ X ′ so that for all
m ∈ N, xm ⊆ x′m. 2) For every x′ ∈ X ′ there exists x ∈ X so that for all
m ∈ N, xm ⊆ x′m. Lemma A.2 implies:

Claim 4.1. X ≪ X ′ =⇒ B(X) ≪ B(X ′).

A sequence s ∈ S is maximal after round m ∈ N if there does not exist
ŝ ∈ S \ {s} so that the following two properties hold: 1) sm = ŝm and 2)
for all n > m, sn ⊆ ŝn. A sequence s ∈ S is maximal at round m ∈ N if
there does not exist ŝ ∈ S \ {s} so that the following two properties hold:
1) sm−1 = ŝm−1 and 2) sm ⊆ ŝm. We use Claim 4.1 to establish that all
maximal sequences are maximal at every round:

Claim 4.2. The sequence s ∈ S is maximal after round m if and only if it
is maximal at round n for all n > m.

Let S̄m(sm) denote the collection of sequences s̃ ∈ S which are maximal
after round m and satisfy s̃m = sm. Claim 4.2 then implies the following
finiteness property of maximal sequences:

Claim 4.3. There exists L ∈ N so that for every m ∈ N and every s ∈ S,

|S̄m(sm)| < L. (4.4)

Say that X ⊆ BN has converged at round m ∈ N if for all x ∈ X and all
n, l ≥ m, xn = xl. Claim 4.3 and the monotonicity of B imply the following
convergence property of maximal sequences after any finite history:

Claim 4.4. There exists M so that for every m ∈ N and s ∈ S, the set
S̄m(sm) converged at round m+M .
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Finite Generation of the STS. We present a construction of the STS
through iterated applications of the best-response operator. At each step of
the construction, we allow for at most one more non-maximal transition than
in the previous step. In turn, this construction will allow us to conclude on
the finiteness of Ω.

We denote by T̄ 0,0 the set of maximal sequences S̄0(s0). For every m > 0,
let T̄m,0 denote the set of m-maximal sequences, i.e., the set of sequences
that admit at most m non-maximal transitions. We also let T̄m,n be the
subset of T̄m,0 consisting of sequences that admit at most m−1 non-maximal
transitions before round n and that are maximal after round n. Sequences
in T̄m,n may or not have a non-maximal transition at round n. Finally, let
T̄m = ∪nT̄

m,n.
Our next lemma shows that the sets T̄m,n are constructed iteratively

through the best-response operator.

Claim 4.5. For every m ≥ 0, n > 0, T̄m,n is the set of sequences s that are
maximal after round n, admit at most m− 1 non-maximal transitions before
round n, and such that:

s ∈ B(T̄m,n−1).

Claim 4.6 below establishes that S can be obtained as a finite union of
the sets (T̄m,0)m. The result follows from the fact that every sequence s ∈ S
only makes a finite number of non-maximal transitions.

Claim 4.6. There exists N ∈ N so that

N
⋃

m=1

T̄m,0 = S. (4.5)

Cyclicality and Finiteness. We now show that for every m the infinite
sequence of sets (T̄m,n)n is eventually cyclic, which will establish the finiteness
of Ω. First, we conclude from Claim 4.4 and the construction of each set T̄m,n

that the sequences in T̄m,n converge within a bounded number of rounds after
round n:

Corollary 4.1. Let N satisfy (A.15). For every m ≤ N there existsMm ∈ N

so that for every n ∈ N, T̄m,n has converged at round n+Mm.
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By monotonicity of B, sequences in T̄m,n are best-replies to sequences in
T̄m,n−1 and by Corollary 4.1 all sequences in ∪l≥Mm

T̄m,n−l have converged
before round n; We conclude that for any two rounds n > ñ so that

{O(sl) : s ∈ T̄m,l} = {O(sl+n−ñ) : s ∈ T̄m,l+n−ñ}, (4.6)

for every l ∈ {ñ−Mm, . . . , ñ}, we also have that

{O(sñ+1) : s ∈ T̄m,ñ+1} = {O(sn+1) : s ∈ T̄m,n+1}. (4.7)

From Claim 4.3 we conclude that for every m, the number of sequences that
are contained in T̄m,n \ T̄m,n−1 is bounded uniformly over all n ∈ N.

Corollary 4.2. Let N satisfy (A.15). For every m ≤ N there exists Lm ∈ N

so that for every n ∈ N,

|T̄m,n \ T̄m,n−1| ≤ Lm. (4.8)

We conclude from both corollaries that for every m ∈ N, there exists
nm ∈ N and ñm < nm so that (4.6) holds and so we deduce the result below:

Claim 4.7. Let N satisfy (A.15). For every m < N there exists zm ∈ N and
nm ∈ N so that for all s ∈ T̄m+1,0

O(sn) = O(sn+zm), ∀ n ≥ nm. (4.9)

Claims 4.7 and 4.6 then imply that the set of tails is finite, which is what
we needed to show.

4.1 Automaton Representation

Define an automaton as a tuple Â = (Ω̂, β̂, �̂, ω̂0), where Ω̂ is a finite set of
automaton states, β̂ : Ω̂ → B assigns an action set profile to every state, �̂
is a binary successor relation on Ω̂ and ω̂0 ∈ Ω̂ is an initial state. A path on
the automaton is a sequence of states (ω0, ω1, ω2, . . . ) so that ω0 = ω̂0 and
for every m ∈ N,

ωm�̂ωm+1. (4.10)

Let P
Â

denote the set of paths. From Theorem 4.1 we obtain a finite au-
tomaton representation of all ICR-hierarchies: Let β : Ω → B recover the
first coordinate from sequences in each orbit. Define the shift operator on
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sequences γ : BN → BN, which for each sequence (s1, s2, . . . ) removes the first
coordinate

γ : (s1, s2, . . . ) 7→ (s2, . . . ). (4.11)

Define the successor relation � on Ω, where for every ω, ω̂ ∈ Ω, ω � ω̂ if and
only if

ω̂ ⊆ {γ(s) : s ∈ ω}. (4.12)

Letting ω0 = O0(s0), we obtain an automaton.

Theorem 4.2. The tuple A = (Ω, β,�, ω0) is an automaton so that

{(β(ω0), β(ω1), . . . ) : (ω0, ω1, . . . ) ∈ PA } = S. (4.13)

We deduce that the STS is countable, compact and Hausdorff.

4.2 Example

In this section we illustrate our results and construct the STS in an two
players coordination Game.

Consider the following two-player game: N = {1, 2}, K = {−1, 1} and
Ai = A = {a, b} where payoffs are given by:

a b
a k, k −1, 0
b 0,−1 0, 0

If player i (row player) believes that k = 1 with probability less than 1
2

then b is a dominant action. Otherwise, neither action dominates the other.
First order hierarchies of best replies in this game, S1

i , are thus given by
{(A, b), (A,A)}. The first pair corresponds to beliefs which put less than half
of the probability on k = 1. Indeed, recall that S0

−i = {a, b} from Section
3.3 and consider any belief p ∈ ∆K×S0

−i
. Player i thus forms best replies

to p-mixtures of state-contingent conjectures σ : K → ∆A. In the simplex
∆K×A, these p-mixtures over conjectures form geometric rectangles - the
set of probabilities on K × A with constant marginal belief on K given by
(p1, p−1). The right panel of Figure 1 illustrates these rectangles for p1 <

1
2

and p1 ≥
1
2
. The left of Figure 1 plots the simplex ∆K×A, where the shaded

triangle with dashed contour marks the boundary of the partition induced
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by the best response correspondence of player i. When p1 <
1
2
, the mixture

of the conjectures is entirely included in the region where bi is the unique
best-response. When p1 ≥

1
2
, the conjectures cross regions where a and b, or

both are best-responses. Hence S1
i = {(A,A), (A, b)}.

1/2

1/2

1/2

(b, 1)

(b,−1)

(a, 1)

(a,−1) 1/2

1/2

1/2

(b, 1)

(b,−1)

(a, 1)

(a,−1)

p1 > 1/2

p1 < 1/2

Figure 1: For all beliefs in the region between the shaded triangle (excluded) and
the sub simplex spanned by (a,−1), (b,−1) and (b, 1), player i’s best response is
always b. For all beliefs in the region between the shaded triangle (excluded) and
(a, 1), player i’s best response is always a and on the shaded triangle all beliefs
induce both actions a and b as best response.

We repeat the same procedure on S1
−i. For a belief p on K × S1

−i of
player i, let pb denote the probability put on hierarchies ending at b, let p1
denote the probability put on k = 1 and pk,b be the joint probability on
state k ∈ {−1, 1} and hierarchies ending at b. As can be seen in Figure 1,
2p1−pb+(p−1,b−p1,b) < 1 describes the portion of a rectangle associated to p1
where b is a unique best reply for player i. Hence the set of beliefs on K×S1

−i

so that BRi maps to A is given by p1 ≥
1
2
and 2p1−pb+(p−1,b−p1,b) ≥ 1. We

deduce that S2
i = {(A,A,A), (A,A, b), (A, b, b)} corresponds to the following

partition of ∆K×S1

−i
:

(1) 2p1 − pb + (p−1,b − p1,b) ≥ 1 and p1 ≥ 1/2, for (A,A,A)

(2) 2p1 − pb + (p−1,b − p1,b) < 1 and p1 ≥ 1/2, for (A,A, b)

(3) p1 < 1/2, for (A, b, b)

Note that these conditions only depend i’s beliefs on K and on the last
coordinate in S1

−i. As the last coordinates of S1 are the same as the last
coordinates of S1 we deduce that the game is indeed simple. we argue that all
transitions in S are described by the three rules above. The STS automaton
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in Figure 2 below illustrates the transition for coordinates in Si and S−i in
this game:

A b(1)
(2)

(2),(3)

(1), (2) (3)

(3)(1), (2)

Player −i

Player i

Figure 2: STS Automaton.

The automaton represented in Figure 2 above describes the following
transitions: If player i’sm-th coordinate is A, then it must be that p1 ≥

1
2
and

i’s (m+1)-th coordinate in any strategic type must be one of βi(A) := {A, b}.
Moreover, the (m+1)-th coordinate is A if i also believes in strategic types of
−i whosem-th coordinate is b with low enough probability. That is, i believes
that −i plays b with low enough probability in round m (i.e. condition (1)).
Otherwise, the (m+ 1)-th coordinate must be b (condition (2)). However, if
i’s m-th coordinate was b, then i’s (m+ 1)-th coordinate must be βi(b) = b.
In this case, i’s beliefs satisfy either condition (3) or condition (2).

For this example, note first that the only possible change in the last
coordinate when going from S1

i to S2
i is to move from A to b. A probability

on K × S2
−i must therefore put at least as much probability on sequences

ending with b than its marginal on K×S1
−i. But under this constraint, third

order types can also only move from A to b or stay unchanged. Hence the
automaton above generates all the sequences in S.

5 Discussion

Our construction is topological and the minimality property implies that
the STS is endowed with the product topology on sequences. However, the
automaton we have constructed in Section 4.2 illustrates how strategic con-
tinuity fails in the product topology. In Figure 2, the type space where the
state inK is common knowledge can be represented by the constant sequence
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cycling through the full action set A forever and the sequence cycling through
action b forever after the first transition. The strategic type space for the
Email game in Rubinstein (1989) can be described by attaching transition
probabilities to the arrows in Figure 2: Transitions labeled (1), (2) and (1)
have probability 1−ǫ while transitions labeled (3) and (2) have probability ǫ.
The paths in this type space converge to the common knowledge path in the
product topology. However, their limits do not converge. Results in Chen
et al. (2016a) and Chen, Di Tillio, Faingold, and Xiong (2010) suggest that
the topology of uniform convergence would ensure strategic continuity for a
fixed game.

A related observation is that the sequence of approximating paths requires
an ever growing type space while the common knowledge type is binary.
The complexity of a type, loosely defined as the minimal size of the type
space required to contain this type is therefore not continuous in the product
topology. We leave the study of type-complexity for future work.

In this paper we focus on Harsanyi type spaces and not on common prior
models. In a companion paper, Gossner and Veiel (2024) represent common
prior models as Markov chains on STS automata and use this representation
to provide a finite characterization of rationalizable outcomes in common
prior models.
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A Appendix

A.1 Preliminaries

We introduce some additional notation. For any mapping f : X → Y we
denote the image of f by Im(f).The following lemma is key for our results:

Lemma A.1 (BR Factorization of ICR). Let (Ti, πi)i be a Harsanyi type
space. Then for every m and every i, ICRm

i admits the following factorization
through BRi,

Ti ∆K×T−i

Bi ∆K×B−i

πi

ICRm
i ICRm−1

−iid

BRi

Proof. Let σ : K × T−i → ∆(A−i) be a πi(ti)-measurable conjecture. Write
the ti mixture of σ as

〈σ, πi(ti)〉Ti(k, a−i) :=

∫

T−i

σ(k, t−i)(a−i) πi(ti)(k, dt−i), ∀ k, a−i

Then by definition of ICR we have that

ICRm
i (ti) =

{

B(〈σ, ti〉Ti) : σ is πi(ti)-meas., supp σ(k, t−i) ⊆ ICRm−1
−i (t−i)

}

where B(p) := argmaxai
∑

k,a−i
ui(k, ai, a−i)p(k, a−i) for every p ∈ ∆(K ×

A−i). We now show that for every πi(ti)-measurable conjecture σ : K×T−i →
∆(A−i) so that supp σ(k, t−i) ⊆ ICRm−1

−i (t−i) we can construct a conjecture
σ̃ : K ×A−i → ∆(A−i) so that supp σ(k, b−i) ⊆ b−i and

〈σ̃, pm−1
i (ti)〉(k, a−i) = 〈σ, πi(ti)〉Ti(k, a−i), ∀ k, a−i (A.1)

where pm−1
i (ti) := πi(ti) ◦ (id × ICRm−1

−i )−1 is the push forward probability.
Define the required conjecture for every k, a−i and b−i ∈ Im(ICRm−1

−i ),

σ̃(a−i|k, b−i) :=

∫

(ICRm−1

−i )−1(b−i)

σ(k, t−i)(a−i) πi(ti)(k, dt−i)

and for b−i /∈ Im(ICRm−1
−i ) let σ̃ be arbitrary. This construction clearly

satisfies (A.1). Conversely, σ̃ can be written as a conjecture K × T−i →
∆(A−i) which is constant on the pre-image of ICRm−1

−i and so the result
follows.
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Amonotone stochastic transformation for player i is a map ρi : K×B−i →
∆(B−i) so that for every b ∈ B and k ∈ K,

b′−i ⊆ b−i, ∀ b
′
−i ∈ supp(ρi(k, b−i)). (A.2)

Lemma A.2 (Monotonicity of BR). For any monotone stochastic transfor-
mation ρi : K × B−i → ∆(B−i) and for any pi ∈ ∆(K × B−i),

BRi(pi ◦ ρi) ⊆ BRi(pi), (A.3)

where for all k ∈ K and b−i ∈ B−i,

pi ◦ ρi(k, b−i) :=
∑

b′
−i∈B−i

ρi(b−i|k, b
′
−i)pi(k, b

′
−i). (A.4)

Proof. Consider any conjecture σi : K×B−i → ∆(A−i) so that supp(σ(·|k, b−i)) ⊆
b−i for all k ∈ K, b−i ∈ B−i. Now define the conjecture σi ◦ ρi, which for
every a−i ∈ A−i, k ∈ K, b′−i ∈ B−i is given by

σi ◦ ρi(a−i|k, b
′
−i) :=

∑

b−i

σi(a−i|k, b−i)ρi(b−i|k, b
′
−i). (A.5)

Since ρi is monotone, the conjecture σi◦ρi also satisfies the support constraint
of σi. Hence

〈σi, pi ◦ ρi〉(k, a−i) =
∑

b′
−i∈B−i





∑

b−i∈B−i

σi(a−i|k, b−i)ρi(b−i|k, b
′
−i)



 pi(k, b
′
−i)

=
∑

b′
−i∈B−i

σi ◦ ρi(a−i|k, b
′
−i)pi(k, b

′
−i)

= 〈σi ◦ ρi, pi〉(k, a−i).

(A.6)

Now the result is immediate from the definition of BRi.

A.2 Strategic Type Spaces

Lemma 3.1 For every strategic type space (Si, ψi)i and every m ∈ N, there
exists measurable σmi : Si → Ai so that for every Harsanyi type space (Ti, πi)i
and associated maps (ηi)i satisfying the diagram of Definition 3.1,

ICRm
i (ti) = σmi ◦ ηi(ti), ∀ti ∈ Ti, ∀i ∈ N (A.7)
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Proof. Let (Si, ψi)i be a STS and let (Σi)i be a measurable family of strate-
gically closed behaviors. Proceed by induction. Base case: The constant
map σ0

i : si 7→ Ai is in Σi and for every Harsanyi type space (Ti, πi)i,
ICR0

i (ti) = Ai = σ0
i ◦ ηi(ti) for all i and ti ∈ Ti. Inductive hypothe-

sis: Suppose (σli)l≤m,i satisfy (A.7). Then for every player i and type ti,
πi(ti) ◦ (id × ICRm−1

−i )−1 = πi(ti) ◦ (id × σm−1
−i ◦ η−i)

−1 and so by Lemma
A.1 ICRi(ti) = BRi(πi(ti) ◦ (id × σm−1

−i ◦ η−i)
−1). By the quotient prop-

erty in Definition 3.1 ψi(πi(ti) ◦ (id × η−i)
−1) = ηi(ti) and by the strate-

gic closure property in Definition 3.2 there exists σmi so that σmi ◦ ηi(ti) =
BRi(πi(ti) ◦ (id× σm−1

−i ◦ η−i)
−1).

Lemma 3.2

(i) Let sm ∈ Bm, then sm ∈ Sm if and only if there exists a Harsanyi type
space (T, π) and a type profile t ∈ T so that sm = (ICRl(t))l≤m.

(ii) Let s ∈ BN, then s ∈ S if and only if there exists a Harsanyi type space
(T, π) and a type profile t ∈ T so that s = (ICRl(t))l≥0.

Proof. We start with (i): We prove both directions inductively using the
following base case: For every Harsanyi type space (Ti, πi)i and player i we
have S0

i = {Ai} = ICR0
i (ti). For the “if” direction: Inductive hypothesis:

Fix a Harsanyi type space (Ti, π)i, and suppose that for any player i and
type ti ∈ Ti, (ICR

l
i(ti))l≤m−1 ∈ Sm−1

i . Then by Lemma A.1, ICRm
i (ti) =

BRi(πi(ti)◦ (id× ICRm−1
−i )−1) and so πi(ti)◦ (id×

∏

l≤m−1 ICR
l
−i)

−1 ∈ ∆(K×

Sm−1
−i ) implies (ICRl

i(ti))l≤m ∈ Smi , as required.

Prove the “only if” by constructing a type space for every sm ∈ Sm con-
taining a type t so that

∏

l≤m ICRl(t) = sm. For every i, smi ∈ Smi implies that

there exists pmi ∈ ∆(K×Sm−1
−i ) so that smi = (BRi(margK,Sl

−i
(pmi )))l≤m−1. We

proceed by induction on m. Suppose we have picked a selection ιmi : Smi →
∆(K × Sm−1

−i ) from (ψmi )
−1(·). For every sm+1

i , we may construct a selec-
tion ιm+1

i so that for every sm+1
i ∈ Sm+1

i , margK,Sm
−i
(ιm+1
i (sm+1

i )) = ιmi (s
m
i ).

Finally, by Lemma A.1 the m-th component smi,m of smi is given by smi,m =
ICRm

i (ι
m
i (s

m
i )), for all m, as required.

Finally, (ii) follows from the properties of inverse limits of the construc-
tions in the proof of (i).

Lemma 3.3 (S, ψ) obtained in our construction of hierarchies of best
replies are an STS.
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Proof. Lemmas A.1 and 3.2 (i) ensure that (S, ψ) is a type space quotient.
The coordinate projection then yields a best-reply closed family of measur-
able strategic behaviors.

Theorem 3.1

(i) (S, ψ) is a minimal STS.

(ii) If (S ′, ψ′) and (S ′′, ψ′′) are minimal STS then S ′′ and S ′ are isomorphic.

Proof. By Lemma 3.1 any finite order ICR hierarchy can be recovered con-
tinuously from any STS. By Lemma 3.2 the set S coincides with all ICR
hierarchies. Then by Lemma 3.3, (S, ψ) is a STS which can be recovered
from all STS. The product sigma algebra then ensures that (S, ψ) is a STS
which is minimal. As the property of minimality is universal, every minimal
STS is isomorphic to S.

Claim 4.1 X ≪ X ′ =⇒ B(X) ≪ B(X ′).

Proof of Claim 4.1. Since X ≪ X ′ there exists a mapping ρ : X → ∆(X ′)
so that for all x ∈ X,

ρ({x′ ∈ X ′ : ∀ n, xn ⊆ x′n}|x) = 1. (A.8)

For every player i and xi ∈ Xi, we thus derive a stochastic transformation
ρ−i,xi : K ×X−i → ∆(X−i), which for every k, x−i satisfies

ρ−i,xi(x
′
−i|k, x−i) :=

∑

x′i∈X
′

i

ρ(x′i, x
′
−i|k, x−i, xi). (A.9)

Then the result follows by applying Lemma A.2 at every coordinate of xi.

Claim 4.2 The sequence s ∈ S is maximal after round m if and only if
it is maximal at round n for all n > m.

Proof. One direction is immediate: If s is maximal at round n for all n > m
then it must be maximal. Suppose now that s is maximal after round m.
For any n ∈ N, let S̄n ⊆ S denote the set of sequences which are maximal
after round n. Moreover, let S̃n ⊆ S denote the set of sequences which are
maximal at round n. For every ŝ ∈ S̄n, define the set of sequences obtained
by making the n-th entry maximal and preserving the rest of the sequence:

Ŝn(ŝ) := {(ŝn−1, s̃n, s̃n+1, . . . ) : s̃ ∈ S̃n+1 s.t. s̃n = ŝn}. (A.10)
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Note that for every s̄ ∈ S and any ŝ ∈ Ŝn(s̄) we have that ŝn ∈ Sn. By
Claim 4.1 we conclude that

B(S) ≪ B(S̄n) ≪ B(∪s̄∈S̄nŜn(s̄)) (A.11)

Since B(S) = S, we conclude that S ≪ B(∪s̄∈S̄nŜn(s̄)). Moreover, by
construction of S we must have that for all ŝ ∈ B(∪s̄∈S̄nŜn(s̄)), ŝn+1 ∈ Sn+1.
Applying this argument for all n′ ≥ n implies that Ŝn(ŝ) = S̄n(ŝ) and so
S̄n =

⋂

l>n S̃
l, which concludes the proof.

Claim 4.3 There exists L ∈ N so that for every m ∈ N and every s ∈ S,

|S̄m(sm)| < L. (A.12)

Proof. Since the sequences in S are weakly decreasing in the set inclusion
order, we conclude from the sequential maximality property established in
Claim 4.2 that for any sequence s ∈ S̄m and s̄ ∈ S̄m(sm),

{sn : n ∈ N} = {s̄n : n ∈ N} =⇒ s = s̄. (A.13)

Hence the result.

Claim 4.4 There exists M so that for every m ∈ N and s ∈ S, the set
S̄m(sm) converged at round m+M .

Proof. We proceed inductively on m ∈ N. We start with the base case:
S̄0(s0). By Claim 4.3 there is some finite M so that S̄0(s0) has converged
at round M . Suppose now that S̄m−1(sm−1) has converged at round m −
1 +M for every sm−1. It follows from the definition of B that B(S̄m−1) has
converged at round m +M . By maximality of S̄m and monotonicity of B,
we deduce that S̄m(sm) ⊆ B(S̄m−1), and so the result follows.

Claim 4.5 For every m ≥ 0, n > 0, T̄m,n is the set of sequences s that
are maximal after round n, admit at most m − 1 non-maximal transitions
before round n, and such that:

s ∈ B(T̄m,n−1).
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Proof. We already established that S̄m(sm) ⊆ B(S̄m−1). We deduce from
the monotonicity of B that every sequence that makes m − 1 non-maximal
transitions before round n is a best-reply to beliefs supported on sequences
that make at most m−1 non-maximal transitions before round n−1. Given
T̄m,0 and T̄m,n−1, we thus have that

T̄m,n :=
⋃

s∈B(T̄m,n−1):sn−1∈(T̄m,0)n−1

S̄n(sn), (A.14)

where (T̄m,0)n−1 := {sn−1 : s ∈ T̄m,0}.

Claim 4.6 There exists N ∈ N so that
N
⋃

m=1

T̄m,0 = S. (A.15)

Proof. We will argue that for the infinite sequence of sets (T̄m,0)m∈N obtained
from the recursive construction above, there is N ≤ |B| so that

T N :=
N
⋃

m=1

T̄m,0 = S. (A.16)

Since T̄ 1,0 ⊆ S, we conclude that T w ⊆ S for all w. Fix any s ∈ S. Note that
s makes at most |B| many non-maximal transitions: The set of roundsm ∈ N

so that s /∈ S̃m(sm) is at most |B|, where S̃m(sm) is the set of sequences s̃ ∈ S
which are maximal at round m and satisfy s̃m−1 = sm−1. We now show by
induction on n that

sn ∈ {s̄n : s̄ ∈ T w}, (A.17)

for every w ≥ |B|. Note that by construction of S, condition (A.17) holds
for n = 0. Suppose then that we have shown condition (A.17) for all s ∈ S
and some n = n′ − 1. Then there exists m ≤ |B| so that

sn
′−1 ∈ {s̄n

′−1 : s̄ ∈ T̄m,n
′−1}. (A.18)

By the construction of S, we conclude that

sn
′

∈ {s̄n
′

: s̄ ∈ B(T̄m,n
′−1)}, (A.19)

and so there is m′ ≤ |B| so that

sn
′

∈ {s̄n
′

: s̄ ∈ T̄m
′,n′

}. (A.20)

We deduce that for all w ≥ |B| we must have that s ∈ T w and so the result
follows.
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Claim 4.7 Let N satisfy (A.15). For every m < N there exists zm ∈ N

and nm ∈ N so that for all s ∈ T̄m+1,0

O(sn) = O(sn+zm), ∀ n ≥ nm. (A.21)

Proof. By monotonicity of B we have that for every n ∈ N,

S̄n ⊆ B(S̄n−1). (A.22)

Hence T̄m,n ⊆ B(T̄m,n−1). For any two rounds n > ñ so that

{O(sl) : s ∈ T̄m,l} = {O(sl+n−ñ) : s ∈ T̄m,l+n−ñ}, (A.23)

for every l ∈ {ñ−Mm, . . . , ñ}, we also have that

{O(sñ+1) : s ∈ T̄m,ñ+1} = {O(sn+1) : s ∈ T̄m,n+1}. (A.24)

We conclude from both corollaries that for every m ∈ N, there exists nm ∈ N

and ñm < nm so that (A.23) holds. Hence the result follows.

Theorem 4.1 Ω is a finite set.

Proof. Follows from Claims 4.6 and 4.7.
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