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Abstract

We study (interim correlated) rationalizability in games with in-
complete information. For each given game, we show that a simple
and finitely parameterized class of information structures is sufficient
to generate every outcome distribution induced by general common
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additive, idiosyncratic noise. We characterize the set of rationalizable
outcomes of a given game as a convex polyhedron.
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1 Introduction

In strategic interactions under incomplete information, we explore the two
pivotal information design questions: How does varying information among
players influence the range of distributions over outcomes, and how can we
construct an information structure that yields a specific outcome distribu-
tion?

We answer these questions when outcomes are defined through the lens
of Interim Correlated Rationalizability (ICR henceforth), a concept based on
common certainty of rationality between players introduced by Dekel et al.
(2007). These answers are important from a theoretical standpoint as well
as for practical applications in information design and the robustness of eco-
nomic outcomes.

Information design (see e.g. Kamenica, 2019; Morris et al., 2020, for re-
cent surveys) studies the impact of information on outcomes in games. In
this literature, implementation is achieved through the dissemination of in-
formation to players. As in mechanism design, the question is not just what
outcomes can be implemented, but also, for all possible such outcomes, to
build a device that implements it.

We develop a toolbox that allows to analyze the recursive structure of
ICR in any finite game. Using these tools, we then characterize rationalizable
distributions and the corresponding information structures that implement
them. Previous important contributions to information design under ICR,
such as Morris et al. (2020) and economic applications (see, e.g. Mathevet
et al., 2020; Halac et al., 2021), require both binary actions and supermodular
payoffs. Our new methodology allow to dispense with both assumptions
altogether.

The ICR solution concept builds upon the foundations laid by correlated
rationalizability for complete information (Bernheim, 1984; Pearce, 1984),
and was expanded to incorporate incomplete information by Dekel et al.
(2007). It is the central concept underlying global games and outcome ro-
bustness to incomplete information.

We now discuss information design under Bayes-Nash equilibria to draw
a comparison with ICR and highlight the differences in methodologies and
outcomes. Information design under Bayes-Nash equilibria, as in correlated
equilibria and their variations (Aumann, 1974, 1987; Forges, 1986; Berge-
mann and Morris, 2016), assumes that the information designer not only
has control over the dissemination of information among players, but can
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also impose coordination on which Bayes-Nash equilibrium of the game with
incomplete information they play. In contrast, information design under
ICR relies only on the assumption of players’ common certainty of ratio-
nality, without requiring any form of coordination on equilibrium selection.
Thus, ICR provides a stronger form of information design than Bayes-Nash,
which explains why fewer outcomes are implementable with the former than
with the latter.

Another motivation for focusing on ICR, beyond its intrinsic power, is its
fundamental role in addressing the question of robustness. The robustness
literature, initiated by Kajii and Morris (1997), explores the persistence of
equilibrium outcomes in games under slight information perturbations. This
area of research conceptualizes an adversarial information designer tasked
with selecting an information structure to destabilize an existing outcome. In
these models, an outcome is considered destabilized whenever it is excluded
with non-vanishing probability under ICR when the information perturba-
tion is taken arbitrarily small. A comprehensive understanding of game out-
comes under ICR enables precise delineation of the power of the adversarial
information designer, a crucial step in understanding which outcomes are ro-
bust. The current state of the art, as represented by Oyama and Takahashi
(2020), provides a full characterization of robust outcomes for the limited
class of binary action supermodular games. We view our characterization
of implementable outcomes for general games as a promising step toward
overcoming these limitations.

We now turn to the description of our main result and its economic rel-
evance, which we follow by an overview of the toolbox we develop and our
proof strategy.

Our main result, Theorem 5.2, is a complete characterization of the set
of rationalizable outcome distributions for any finite game. We also pro-
vide, for each such rationalizable outcome distribution, the construction of
an information structure that implements it.

The class of information structures we construct admits a simple descrip-
tion using finitely many parameters. We provide a representation of this
class which coincides with information structures widely used in economic
applications: a common state with additive idiosyncratic noise and a finite
signal, where the number of signals is bounded by the data of the game.
The finite signal corresponds to a recommendation of rationalizable actions
for each player. The common state with additive, idiosyncratic noise gener-
ates rich higher-order beliefs and allows strategic contagion of actions. Thus,
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our information structures generalize those commonly studied in the Global
Game literature, pioneered by Carlsson and Van Damme (1993) and Mor-
ris and Shin (2003). We show that the combination of these two devices is
enough to generate any rationalizable outcome in any finite game.

By relying on this class of information structures, we characterize the set
of rationalizable outcomes using a finite family of linear inequalities, from
which it follows that it is a convex polyhedron. The structure of rational-
izable outcomes is thus simple and similar to that of correlated equilibrium
distributions. This linear structure is also advantageous when considering
applications.

We demonstrate that our results provide a powerful tool to study a variety
of economic situations where action spaces are naturally large. For example,
we examine information disclosure in priority systems and provide an optimal
information structure using our results. This optimal information structure
can be interpreted as providing private information with a timing friction.

Our proof proof strategy consists of three main steps, where each step
introduces new conceptual tools. In the first one, we study the possible laws
followed by the entire process of elimination of dominated strategies when
the prior varies. We characterize the processes on ICR hierarchies that arise
from some information structure, as well as a sufficient set of information
structures to generate those, through a revelation principle. These processes
are sufficient to pin down the set of rationalizable outcomes, i.e., of outcomes
that survive iterated deletion of dominated strategies. In the second step,
we show that these limit distributions are all induced by a finite-dimensional
parametrized sub-class of processes, which we call SCAMP. Finally, in our
third part we rely on SCAMP to describe rationalizable distributions through
a finite family of linear inequalities. We also build a dictionary that allows
to reinterpret SCAMP through generalizations of correlated equilibria, the
email game, and global games.

We now detail these three main steps: a revelation principle for ICRhierar-
chies, SCAMP, and the dictionary for information structures.

Every type in a Harsanyi type space induces a sequence of action sets ob-
tained through the elimination of dominated strategies, henceforth referred
to as the ICRhierarchy for this type. Therefore, any common prior infor-
mation structure induces a probability distribution over (the state of nature
and) players’ ICRhierarchies. Conversely, any probability distribution on
(nature and) profiles of ICR hierarchies gives rise to a common prior infor-
mation structure where the set of ICR hierarchies for a player acts as a set
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of types for that player.
We show that a distribution over ICRhierarchies arises from a common

prior if and only if, in this new information structure, the ICRhierarchy
associated with every player’s type is precisely that type. A fundamental
consequence is that the set of ICRhierarchies for a player forms a canonical
space with a revelation principle: A distribution on ICRhierarchies is induced
by some common prior if and only if it is induced by itself viewed as a common
prior information structure. The distributions on ICRhierarchies induced
by all common prior information structures thus forms a set of canonical
information structures that is enough to induce all distributions.

Moreover, we characterize canonical information structures through a se-
ries of obedience constraints. There is one such constraint for every type and
every round of elimination of dominated strategies, and the obedience con-
straints for a type at a certain level of elimination says precisely that the next
level of ICR correspond to actions that survive one more round of elimina-
tion given the type’s beliefs on other types and nature. It follows that these
obedience constraints are closed forms that characterize the distributions on
ICRhierarchies arising from any potential common priors.

Now that we have pinned the canonical distributions on ICRhierarchies,
our next step is to characterize the limit distributions arising from those,
i.e., the set of rationalizable distributions. Since several distributions on
ICRhierarchies may, in general, lead to the same rationalizable distribution
(where, for instance, the order of elimination of dominated strategies between
different rounds differs but the final result is the same), there is a certain
degree of freedom in finding such a sub-class of canonical distributions.

We show that, among the class of canonical information structures, all
outcome distributions are induced by a subclass which we call Simple Canon-
ical Automaton Markov Priors (or SCAMP for short). Starting with any
game, and building on a companion paper Gossner and Veiel (2024) we con-
struct an automaton, given by a finite set of states Ω together with an action
set in the game for each player at each state. There is an initial state at
which each player is assigned their full action set. Every process on K ×ΩN

induces, through the mappings from Ω to action sets, a distribution on (K
and) sequences of action sets for all players.

We say that a probability distribution on K × ΩN is a SCAMP if it: 1)
satisfies the obedience constraints (in particular, it has support on profiles of
ICRhierarchies), 2) is Markovian on Ω, and 3) every path on the automaton
passes through at most one non-terminal cycle.
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The first property ensures that the distribution of states of nature and
hierarchies arises from a canonical prior; it also provides a common prior
that implements it, namely the (canonical) distribution on the automaton
paths itself. The second property, which builds on the recursive structure
of ICR, implies that the class of information structures considered is finitely
dimensional and parameterized, and simple to generate. Finally, the third
property ensures that the obedience constraints at any round of elimination
of dominated strategies only depend on the current ICR set and not on the
history of paths leading to it. In particular, it implies a finite number of
obedience constraints.

SCAMP is therefore characterized by a finite number of parameters (Markov
transitions) as well as a finite number of constraints (the obedience con-
straints). It thus provides a finitely dimensional parametrized characteriza-
tion of all rationalizable distributions.

Finally, in our third step we characterize rationalizable outcome distribu-
tions as those induced by SCAMP. We show that their set is given by a finite
number of linear constraints, hence that rationalizable distributions form a
polyhedron. Our methods allow to engineer, for each rationalizable distri-
bution, a SCAMP information structure that induces it. We also show that
SCAMP information structures have natural interpretations, both as Ad-
ditive Noise Information Structure, which is a generalized version of global
games Carlsson and Van Damme (1993) information structures, and as asyn-
chronous information structures in which the common uncertainty arises from
players receiving messages at slightly different times, a generalization of Ru-
binstein (1989).

The rest of the paper is organized as follows. In Section 2 we illustrate
our concepts and results in a game of technology adoption. We present the
model in Section 3 and introduce Strategic Automata as our main tool to
represent ICR hierarchies in Section 4. Our main results are presented in
Section 5. Section 7 discusses the complexity and interpretation of SCAMP
and relates SCAMP to existing work. Finally, in Section 6 we apply our
methods and results to the design of information in common value priority
systems.
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2 A Technology Coordination Example

We illustrate the concepts and results of the paper in a game of technology
coordination. Two players, 1 (row player) and 2 (column player), each choose
between technologies a and b to engage in a joint project. Player 1 has a
preference for technology b, and player 2 for a. There are two states of nature.
In the good state, denoted G, the project is successful if players coordinate
on the same technology, and payoffs in that state are those of a battle of
sexes. In the bad state, denoted B, the project fails and it is a dominant
strategy for each player to stick to their preferred technology.

a b
a 2, 1 0, 0
b 0, 0 1, 2

G

a b
a 0, 1 0, 0
b 2, 2 1, 0

B

Consider a discrete set of types Ti for each player i, and a common prior
probability P over {G,B}×T1×T2, with marginal having full support on each
Ti. A triple k, t1, t2 is drawn according to P , then each player i is informed
of her type ti. We denote conditional beliefs of player i by pi = P (·|ti).

Given player 1’s beliefs on the state of nature, b dominates a (irrespective
of player 2’s choices) iff

p1(B) > p1(G).

Note that there are no beliefs of player 1 for which a dominates b, as if player
2 plays b, b is a best-response of player 1 for every belief on the state of
nature.

For player 2, a dominates b iff

p2(B) > p2(G),

and there are no beliefs such that b dominates a.
For n ≥ 1, let us denote Rn

i = Rn
i (ti) the set of actions that survive n

rounds of deletion of dominated strategies given i’s beliefs. We just have
established:

R1
i =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

b if i = 1 and pi(B) > pi(G)

a if i = 2 and pi(B) > pi(G)

ab if pi(B) ≤ pi(G)
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where for convenience a denotes {a}, b denotes {b} and ab denotes {a, b}.
For the next levels of elimination, simple algebra shows that for player 1:

Rn+1
1 =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

a if 3p1(R
n
2=a,G)− p1(G) > 2p1(B)− p1(R

n
2=b, B)

b if p1(R
n
2=a,B) + p1(B) > 2p1(G)− 3p1(R

n
2=b, G)

ab otherwise

and for player 2:

Rn+1
2 =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

a if p2(R
n
2=b, B) + p2(B) > 2p2(G)− 3p2(R

n
2=a,G)

b if 3p2(R
n
2=b, G)− p2(G) > 2p2(B)− p2(R

n
2=a,B)

ab otherwise

A few remarks are in order. As already stated, at the first level, player 1
may eliminate a, but not b, while player 2 may eliminate b but not a. If
player 1 doesn’t eliminate b at the first level, she may eliminate a at the
second level if she believes with high enough probability that player 2 elim-
inated a at the first level. There are no beliefs at which player 1 eliminates
b at the second level while not having eliminated it at the first level. Sym-
metrically player 2 may eliminate a at the second level but not at the first.
More generally, if Rn

1 = ab, for n odd we may have Rn+1
1 = ab or Rn+1

1 = a
but not Rn+1

1 = b and for n even we may have Rn+1
1 = ab or Rn+1

1 = b but
not Rn+1

1 = a. A symmetric property holds for player 2.

2.1 Strategic Automaton

The possible ICR hierarchies for each player are summarized on the automa-
ton of Figure 1. The state labeled with“start for Pi”, is the initial (or 0-th)
level of for player i, R0

i = ab. The sequences of state labels starting with
the initial state for player i and following the arrows, potentially ending in
an absorbing state marked by a double circle, are the sequences R0

i = ab,
R1

i , . . . ,R
n
i , . . . that appear with positive probability in some common prior

model.
Figure 2 allows to visualize the possible joint ICR hierarchies for both

players as the set of infinite sequences starting at the initial state and that
follow arrows, possibly reaching a terminal state.

Let us call Ω the set of 16 states of figure 2. Each state ω ∈ Ω is labeled
with an action set ωi for each player i. Since every pair of types (t1, t2) in a
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abstart for P1 ab start for P2

b a

Figure 1: Automaton for one player in the technology example. There are 4
states and each state contains an action set. The initial state is on the left
(player 1) or on the right (player 2). Double circled states are terminal ones.

type space can be mapped to a path in the automaton, it follows that every
prior P induces a joint probability distribution on K × ΩN. We are now
asking the question: what is the set of such possible distributions when P
varies?

Note that to such a distribution on K × ΩN is associated an information
structure in which (k,ω1, . . . ,ωn, . . .) is drawn according to P , and player i is
informed of the corresponding sequence of i-th coordinates (ω1

i , . . . ,ω
n
i , . . .).

Our revelation principle (Theorem 4.1) shows that a distribution on K ×
ΩN arises from (Rn

i )n applied to some information structure P if and only
if, in the information structure where i is informed of (ω1

i , . . . ,ω
n
i , . . .), i’s

ICRhierarchy is precisely (ω1
i , . . . ,ω

n
i , . . .). From the derivation of ICR hi-

erarchies from types above, this is the case when for every n, and when pi
denotes P (k,ω1

−i, . . . ,ω
n
−i, . . . |ω1

i , . . . ,ω
n
i , . . .):

ωn+1
1 =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

a if 3p1(ω
n
2=a,G)− p1(G) > 2p1(B)− p1(ω

n
2=b, B)

b if p1(ω
n
2=a,B) + p1(B) > 2p1(G)− 3p1(ω

n
2=b, G)

ab otherwise

and for player 2:

ωn+1
2 =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

a if p2(ω
n
2=b, B) + p2(B) > 2p2(G)− 3p2(ω

n
2=a,G)

b if 3p2(ω
n
2=b, G)− p2(G) > 2p2(B)− p2(ω

n
2=a,B)

ab otherwise

These equations, which we call Obedience Constraints, are expressed di-
rectly on conditional beliefs pi, and thus depend only on the probability
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ab
ab

start

ab
ab

b
a

a
b

ab
a

ab
a

b
ab

b
ab

a
ab

a
ab

ab
b

ab
b

a
a

b
b

a
a

b
b

Figure 2: Automaton for both players in the technology example. Each state
contains an action set for player 1 (top) and for player 2 (bottom). Arrows
indicate possible transitions.

distribution P on K × ΩN.
The revelation principle thus fully characterizes the possible distributions

of (k, (Rn
1 )n, (R

n
2 )n) that may arise in any common prior model. It also char-

acterizes information structures that yield these distributions, as canonical
information structures in which each player i is informed of the sequence of
i-th coordinates contained in each state of the automaton, and where, the
n-th state contains precisely the n-th ICR sets for both players.

2.2 SCAMP

Now that we understand how distributions on ICR hierarchies can be ob-
tained through the automaton, we move on to the characterization of ratio-
nalizable distributions. Remember that for a type ti of player i in a type
space, the set of rationalizable distributions is obtained as R∞

i = R∞
i (ti) =

∩nR
n
i (ti). We say that a distribution µ on K × ({ab, a, b})2 is rationaliz-

able if there exits a common prior P such that the induced distribution of
(k,R∞

1 ,R∞
2 ) is µ.
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Our SCAMP revelation principle, Theorem 5.1 shows that rationalizable
distributions are precisely those implemented by a particular type of infor-
mation structure, called SCAMP for Simple Canonical Automaton Markov
Prior. A SCAMP is a process on the automaton that 1) is Markovian 2) sat-
isfies Obedience Constraints and thus is Canonical and 3) is Simple. We now
turn to an explanation of each of these properties and their consequences.

A Markov process is given by a probability on states of nature, and, for
each state of the automaton and state of nature, by a transition to states on
the automaton. It is thus given by a finite number of parameters only.

Consider a Markov process on the automaton of Figure 2. Assume that
for some k, the process reaches a state where only one player has eliminated
an action, such as a state in which the action sets are ab for player 1 and b for
player 2. Then, either the process will cycle between the two states with the
same action sets forever, or player 2 will eventually eliminate action b as well.
For the sake of the example, we focus on point rationalizable distributions,
whose support is included in K × {a, b}2. These distributions are of interest
as they are associated uniquely with an expected payoff in the game. In this
case, the distribution on terminal nodes is unchanged by assuming that the
first state with action sets (ab, a) transitions directly to the corresponding
state with action sets (a, a). By applying the same transformation whenever
possible, we obtain a Markov chain of the form in Figure 3. Furthermore,
it is possible to show that this transformation doesn’t violate the obedience
constraints whenever they are satisfied by the original process.

Now, for a fixed state of nature, the process cycles between the two lower
states a certain number of times, before it exits and reaches a terminal state.
We call a process which only passes through a single cycle before reaching a
terminal node simple. Conditional on exiting during a cycle, the probability
of reaching terminal nodes is independent of the number of cycles. Hence the
probability on terminal nodes of the Markov chain is given by the conditional
probability on these nodes after 3 stages of the process.

Simplicity thus allows to compute the implemented distribution from the
distribution in a finite number of iterations, 3 in this example. Furthermore,
we show that whenever a distribution satisfies the OC on the first iterations of
the process, there exists a SCAMP that yields the same outcome distribution
on terminal nodes. Therefore, all that needs to be done is to characterize
the set of possible distributions that satisfy the OC on the first iterations
- in our example, the set of distributions on (k,ω1,ω2,ω3) that satisfy OC.
Since OC are linear inequalities, this yields a characterization of the set of
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ab
ab

start at k

ab
ab

b
a

a
b

ab
a

b
ab

a
ab

ab
b

a
a

b
b

a
a

b
b

pk1

qk1

pk2 qk2

pk3 pk4 qk3 qk4

Figure 3: SCAMP generating point distributions. When a single arrow leaves
a state, this arrow has probability 1. Transitions may depend on the state
of nature k ∈ {G,B}.

rationalizable distributions as a (not necessarily closed) convex polyhedron.
For the technology adoption game, we illustrate the corresponding payoffs
generated by point distributions in Figure 4.

The set of point rationalizable distributions, hence their payoffs, is a
subset of (agent normal form) correlated equilibria (see Forges, 1993) and of
their payoffs. Both payoff sets are subsets of the set of feasible payoffs.

2.3 Additive, Idiosyncratic Noise Representation

Paths in SCAMP are described by trees with branches containing at most one
cycle. Paths embed two sources of uncertainty: 1) about branches of the tree
2) about how many iterations of the cycle the path looped through. These
uncertainties have a dynamic interpretation of information dissemination in
which player receive correlated private signal from a finite set corresponding
to the branch and are also uncertain about the timing of these signals (the
number of cycles).

In our technological coordination game, each player receives a recom-
mendation to play either a or b corresponding to the terminal state of the
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1

1

1.75

1.75

2

21.5

1.5

1.25

1.25

Correlated Equilibrium

ICR

0

0

Feasible Payoffs

Figure 4: Point rationalizable payoffs (in blue), correlated equilibrium payoffs
(in red) and feasible payoffs (in grey) in the coordination game.

automaton. But a player, being informed only of the ICR sequence, doesn’t
know the full path of the automaton. This means that, for instance, player
1 receiving a sequence of signals (ab, . . . , ab, a, a, . . .) doesn’t know which of
the two branches leading to action a was selected. In one of them, player
1 eliminated action b before player 2, in the second she eliminated b after
player 2, and in the third she eliminated b at the same round as player 1
eliminated player 1.

The round at which a player’s type transitions can be modeled as a stop-
ping time. Note that upon receiving her action recommendation, each player
assigns probability one to the other player having received her recommenda-
tion at the same time has hers ± one rounds. Players’ private signals are
thus slightly out of sync. This is very similar to Rubinstein (1989)’s email
game, in which a player doesn’t know whether her message to the other, or
the other’s confirmation was lost first. This is also similar to Global Games
(Carlsson and Van Damme, 1993), where players are uncertain about their
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order in eliminating dominated strategies, but are certain about the outcome.
In fact, SCAMP builds on, and generalizes, both these types of information
structures.

3 Model

General notations For any mapping f : X → Y and any subset E ⊆ X
we write f(E) := {f(x) : x ∈ E}. For a family of sets (Xi)i, we let X =

󰁔
i Xi

and X−i =
󰁔

j ∕=i Xj, for every i. Given a measurable set X, ∆(X) denotes
the set of probability distributions on X.

For a family of maps (fi : Xi → Yi)i, we let f : X → Y be given by
f(x) = (fi(xi))i for x ∈ X and f−i : X−i → Y−i by f−i(x−i) = (fj(xj))j ∕=i for
x−i ∈ X−i.

A marginal on coordinates x1, . . . , xn of a distribution P ∈ ∆(
󰁔

ℓ Xℓ) is
denoted margx1,...,xn

(P ).

Games with incomplete information We fix a finite set N of players
and a finite set K of states of nature. We also fix a payoff structure u, given
by a finite action set Ai and a payoff function ui : K × A → R, for each
player i. A common prior, denoted P , is given by a family of measurable
type spaces (Ti)i∈N , a probability distribution P over K × T admitting a
conditional probability P (·|·) : Ti → ∆(K × T−i) for every player i such that
for every k ∈ K, 1) ti 󰀁→ P (k,X−i|ti) is measurable for every measurable set
X−i ⊆ T−i and 2) P (k,Xi ×X−i) =

󰁕
Xi

P (k,X−i|ti)dP (ti), for every k ∈ K
and measurable sets Xi ⊆ Ti, X−i ⊆ T−i.

A game with incomplete information is a pair (u, P ), where u is a payoff
structure and P is a common prior.

Interim Correlated Rationalizability Interim Correlated Rationaliz-
ability (Dekel et al., 2007) is the outcome of the process of elimination of
dominated strategies, or equivalently never best-responses, in the agent nor-
mal form of the game with incomplete information. It is defined as follows.1

Let Bi denote the collection of non-empty subsets of Ai, and define a con-
jecture for player i as a map σi : K × B−i → ∆(A−i) such that the support

1Our presentation slightly differs from (Dekel et al., 2007) but the two definitions are
equivalent.
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of σi(k, a−i) is included in b−i for every k ∈ K and b−i ∈ B−i. A be-
lief p ∈ ∆(K × B−i) and a conjecture σi induce a probability distribution
〈σ, p〉 ∈ ∆(K × A−i) given by:

〈σi, p〉(k, a−i) =
󰁛

b−i∈B−i

p(k, b−i) σi(k, b−i)(a−i). (3.1)

Player i’s best-reply map bri : ∆(K × B−i) → Bi is defined by:

bri(p) =
󰁞

σ

ß
arg max

ai∈Ai

E〈σ,p〉ui(·, ai, ·)
™
, (3.2)

where E〈σ,p〉 is the expectation with respect to the distribution 〈σ, p〉. The
ICR hierarchy (Rm

i (ti))m≥0 of a type ti ∈ Ti is defined iteratively:

i) For every i ∈ N and ti ∈ Ti, R
0
i (ti) = Ai,

ii) For m ≥ 0, P (·|ti) ∈ ∆(K × T−i) and the (measurable) map Rm
−i from

T−i to B−i induce a belief P (·|ti)◦(id×Rm
−i)

−1 onK×B−i, and Rm+1
i (ti)

is the set of best-responses to this belief:

Rm+1
i (ti) = bri(P (·|ti) ◦ (id× Rm

−i)
−1). (3.3)

The set of rationalizable actions associated to ti is

R∞
i (ti) =

󰁟

m∈N
Rm

i (ti). (3.4)

The outcome distribution µP onK×B induced by P through ICR is given
by:

µP = P ◦ (id× R∞)−1. (3.5)

Two priors P, P ′ are outcome equivalent if µP = µP ′ .

4 Rationalizable Hierarchies

In this section, we show that ICRhierarchies possess a recursive structure
that is characterized by a finite automaton, and characterize the distributions
of ICRhierarchies that arise in common priors model.
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4.1 Revelation principle

We define the set of ICRhierarchies as the set of all possible hierarchies that
arise as we vary the common prior.

Definition 4.1 (ICRHierarchies). The set of ICR hierarchies is the minimal
subset S ⊆ BN so that for every common prior model P and every t in the
support of P , (Rm(t))m ∈ S.

We first characterize the distributions on K and ICR hierarchies arising
from common priors as well as information structures that implement those
hierarchies through a revelation principle on S.

Every common prior P induces, through ICR and the identity on K, a
distribution PR on K ×BN. Let P denote the set of such distributions when
we vary over all common priors on all possible type spaces. The following
result characterizes P . Note that every distribution P ∈ ∆(K ×BN) can be
viewed itself a common prior in which the set of types for player i is BN

i ,
(k, (bni )i,n) is drawn according to P , and each player i is informed of her
corresponding type (bni )n ∈ BN

i .

Theorem 4.1 (Revelation Principle). For P ∈ ∆(K ×BN) the three condi-
tions are equivalent:

1. P ∈ P ;

2. (a) R(s) = s, P a.s. ;

(b) P = PR, i.e., P is the image of itself viewed as a common prior ;

3. P (s0=A) = 1 and P satisfies the family of obedience constraints:

smi = bri(margk,sm−1
−i

P (·, ·|si)) for a.e. si = (smi )m. (4.1)

The proof of Theorem 4.1 can be found in Appendix A.1. The Revelation
Principle implies that every distribution on K and ICRhierarchies can be
implemented through itself viewed as a common prior. In turn, these dis-
tributions are entirely characterized by the family of obedience constraints
(OC’s), one for each type and for each level m.
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4.2 Strategic Automaton

In this section, we show that the set S of possible ICR hierarchies coincides
with the set of paths of a finite automaton. This finite structure captures
the recursivity of the best-response operator of the game.

An automaton is a triple (Ω, β,≼) given by a finite set of states Ω to-
gether with an action map βi : Ω → Bi for every player i and a binary
successor relation ≼ on states. A cycle is an ordered collection of states
c = {ω1, . . . ,ωn} ⊆ Ω so that ωh ≼ ωh+1 for all h < n and ω1 = ωn. A path
is a sequence (ω0,ω1, . . . ) satisfying ωm ≼ ωm+1 for all m ∈ N.

We define a strategic automaton as an automaton for which the set of
paths corresponds to the set of ICR hierarchies.

Definition 4.2 (Strategic Automaton). A strategic automaton is an automa-
ton (Ω, β,≼) such that:

S ⊆ {(β(ωm))m : ∀ m ≥ 0, ωm ≼ ωm+1}.

To prove existence of a strategic automaton, we construct one directly.
We provide a construction of an automaton whose paths give rise to S and
then prove that it is finite and thus a strategic automaton.

The initial state is given by ω0 = S and βi(ω
0) = Ai for every i. For

every m ∈ N, let S∗ = {(s0, . . . , sm) : s ∈ S,m ∈ N} be the set of trun-
cated sequences of S. The set of tails associated to a truncated sequence
(s0, . . . , sm) ∈ S∗ is:

τ(s0, . . . , sm) = {(sm, sm+1, . . . ) ∈ BN : (s0, . . . , sm, sm+1, . . . ) ∈ S}, (4.2)

and the set of states of the automaton is the collection of tail sets:

Ω = {τ(s∗) : s∗ ∈ S∗}.

For every ω ∈ Ω, action labels for player i are given by βi(ω) = smi
for (sm, sm+1, . . . ) ∈ ω, where it follows from (4.2) that the definition is
independent of the choice of (sm, sm+1, . . . ) ∈ ω.

We finally define the successor relation for ω,ω′ ∈ Ω by ω ≼ ω′ if and
only if there exists s0 ∈ B so that

{(s0, s1, s2, . . . ) : (s1, s2, . . . ) ∈ ω′} ⊆ ω. (4.3)

We rely on the following result from Gossner and Veiel (2024).

Theorem 4.2. (Ω, β,≼) is a strategic automaton.
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5 Rationalizable Distributions

We now introduce SCAMP and establish the finite-dimensional structure of
all rationalizable outcomes and information structures used to obtain them.

5.1 SCAMP

A path on a strategic automaton (Ω, β,≼), gives rise for each player i to a
sequence of action sets si = (βi(ω

0), βi(ω
1), . . . ). A process on the automaton

is a probability measure P ∈ ∆(K ×ΩN) so that every sequence (ω0,ω1, . . . )
in its support is a path. A process on the automaton defines a common prior,
where each player i is privately informed of the sequence si. A process on
the automaton P is Markov if for every m ∈ N,

P (ωm+1|k,ω0 . . .ωm) = P (ωm+1|k,ωm), P a.s. (5.1)

We will thus refer to the sequence si as a (canonical) type. A process is
canonical if

R(s) = s, P a.s. (5.2)

For canonical Markov processes, the state ωm at round m of a path is a
sufficient statistic for the distribution over ωm+1 and thus also over Rm+1.

A path loops through a cycle if the path visits some element in the cycle
more than once. A cycle is terminal for a path if the path visits the cycle
infinitely often.

A process P is simple if every path in its support loops through at most
one cycle that is not terminal.

Definition 5.1 (Simple Canonical Automaton Markov Priors, SCAMP). A
process on a Strategic Automaton is SCAMP if it is a Simple, Canonical and
Markov.

5.2 SCAMP Sufficiency

The main result of this section is the existence of a strategic automaton on
which SCAMP is sufficient to obtain all outcome distributions.

Theorem 5.1 (Sufficiency of SCAMP). For every finite game, there exists
a strategic automaton on which SCAMP induces all outcome distributions.
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To prove Theorem 5.1, we start with a canonical prior represented as a
process on a strategic automaton, and we modify it into a SCAMP on a
new automaton. The new automaton depends on the strategic automaton
we start with, but is independent of the canonical prior. The construction
involves averaging probabilities of transitions in order to make the new pro-
cess Markov, and modifying the automaton in such a way that the new one
has at most one cycle. We illustrate the construction in a simple example
below, and then present the general construction.

Example Figure 5 below describes the transition probabilities of a canoni-
cal prior P (top) on a hypothetical strategic automaton. In this example, we
assume that for every action of every player, there is a state where this action
is dominant. Figure 6 describes the transition probabilities of a Markov chain
on the same automaton. For every m ∈ N, p1k,m is the probability making
the left-most transition conditional on cycling for m rounds and conditional
on state k ∈ K,

p1k,m = P (sm+1 = (ab, a) : k, sn = (ab, ab), ∀ n ≤ m). (5.3)

The transition probabilities p2k,m, . . . , p
4
k,m are defined similarly. For every

m ∈ N and state k ∈ K, the probability of cycling m times conditional on k
be given by P (m|k) = 󰁔

n≤m(1−
󰁓4

l=1 p
l
k,m).

ab

ab

start at k

ab

a

b

ab

ab

b

a

ab

b

a

b

a

a

b

a

b

1−
󰁓4

l=1 p
l
k,m

p1k,m p2k,m p3k,m p4k,m

Figure 5: Canonical Prior as Process on SCAMP automaton.
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Figure 6: Averaging process to SCAMP.

We now construct a SCAMP process, represented in Figure 6, which
induces the same outcome distribution as the original process P . The Markov
transitions are parametrized by a family ηk, p̄

1
k, p̄

2
k, p̄

3
k, p̄

4
k and depend on k. We

need pk = (p1k, . . . , p
4
k)k and (ηk)k to satisfy the following three conditions2:

i) Outcome Equivalence:

p1k + p2k = (p1k,1 + p2k,1) +
∞󰁛

m=2

(p1k,m + p2k,m)P (m− 1|k),

p3k + p4k = (p3k,1 + p4k,1) +
∞󰁛

m=2

(p3k,m + p4k,m)P (m− 1|k).
(5.4)

ii) Obedience of type where player 1 transitions to a at the first round:

󰁛

k∈K
P (k)ηkp

1
k(u1(k, a,α2)− u1(k, b,α2)) > 0, ∀ α2 ∈ {a, b}. (5.5)

2We omit symmetric obedience constraints: Type of player 1 transitioning to b at
first round, the types for player 2 making a transition at round one, types for player 1
transitioning to b at later rounds and types of player 2 making their transition away from
ab at later rounds.
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iii) Obedience of types transitioning to a at round m+ 1 for player 1:

󰁛

k∈K
P (k)

Ä
ηk (1− ηk)

m−1 p1k (u1(k, a, b)− u1(k, b, b))

+ ηk (1− ηk)
m p2k(u1(k, a,α2)− u1(k, b,α2))

ä
> 0,

∀ α2 ∈ {a, b}, ∀ m ≥ 1.

(5.6)

Since P satisfies obedience, we know that

󰁛

k∈K
P (k)p1k(u1(k, a,α2)− u1(k, b,α2)) > 0, ∀ α2 ∈ {a, b}. (5.7)

Consider setting ηk = 1 whenever the utility difference of condition (ii) is
positive for all actions α−i - when a (respectively b for the other player) is
a dominant action - and setting ηk = ζ ∈ (0, 1) when the utility difference
is negative for some action α−i. By convexity of the OCs, condition (iii) is
satisfied when choosing plk = plk +

󰁓∞
m=2 p

l
k,mP (m− 1|k) at each l = 1, . . . , 4

and any such choice of (ηk)k. Note that this choice of p also satisfies condition
(i), which is independent of (ηk)k. Given our choice of p, there must be ζ
small enough so that

ζp1k ≤ p1k, ∀ k s.t. min
α2∈{a,b}

(u1(k, a,α2)− u1(k, b,α2)) < 0. (5.8)

Hence ηk ∈ {ζ, 1} for all k and some small enough constant ζ ∈ (0, 1) defines
a SCAMP that is outcome equivalent to P .

5.2.1 General Construction of Markov Process

An important challenge in the general construction is that not all priors and
automata are as well behaved as the one in the example above. The paths of
a prior P may loop through multiple cycles, they may pass through several
states before and after each cycle. In this section we provide an overview
of the general construction that takes care of these situations. Much of the
work will involve bringing priors into a form that resembles the automaton
in the example of the previous subsection.

Construction of Extended Automaton We start out with the strategic
automaton (Ω, β,≼) defined in Section 4.2, which we then extend in order
to prove Theorem 5.1. In preparation for our construction, we will restrict
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attention to a subclass of well-behaved priors in P , which we call product
priors that are closed from below. To define this property, we consider the
following partial order on sequences s, ŝ ∈ S,

s ⊆∗
S ŝ ⇐⇒ smi ⊆ ŝmi , ∀ i,m and B(s) = B(ŝ), (5.9)

where B(s) := {sm : m ∈ N}. Define the set of lower bounds of s, s′ ∈ S,

S(s, s′) := {s ∈ S : s ⊆∗
S s, s ⊆∗

S s′} . (5.10)

Say that P is closed from below if for all s, s′ ∈ S in the support of P so that
S(s, s′) ∕= ∅, we also have that

P (S(s, s′)) > 0. (5.11)

For any player i, we write ŝ ⊆∗
Si

s when for every m ∈ N, ŝmi ⊆ smi , and
B(s) = B(ŝ). A prior P ∈ P is a product prior if for every i and for every
pair of sequences s, ŝ ∈ SP satisfying ŝ ⊆∗

Si
s,

P (si, ŝ−i) > 0, and P (ŝi, s−i) > 0. (5.12)

We first show that every prior admits an outcome equivalent product prior
that is closed from below.

Lemma 5.1. For every P ∈ P there exists an outcome equivalent product
prior P ∗ ∈ P that is closed from below.

We prove Lemma 5.1 by exploiting a key monotonicity property of br,
which we state in Claim A.1 in the appendix.

We show that under this class of priors we can construct the Markov
process from the ⊆∗

S-minimal sequences: For any P ∈ P , let SP denote the
set of ⊆∗

S-minimal sequences in the support of P ,

SP := min
⊆∗

S

{s ∈ S : P (S) > 0}. (5.13)

For any s ∈ S in the support of P and player i let Si,P (s) denote the ⊆∗
S-

minimal sequences in the support of si’s beliefs:

Si,P (s) := min
⊆∗

S

{s̃ ∈ S : P (s̃|si) > 0}. (5.14)

We say that P has a seed if for every s ∈ SP , Si,P (s) ⊆ SP .
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Lemma 5.2. Every product prior that is closed from below has a seed.

We now proceed to the construction of the strategic automaton (Ω, β,≼)
for which Theorem 5.1 holds. In (Ω, β,≼), each state consists of a pair
ω = (ω, (ιMi )i), where ω ∈ Ω and ιMi ⊆ ΩM describes player i’s information
set chains of a given length M ∈ N that we specify in Lemma 5.3 below. The
mapping β and successor relation ≼ are inherited from β and ≼ in a natural
way.

Let P ∈ P be a product prior that is closed from below. Let s ∈ SP and
fix m ∈ N. A (s,m)-chain is a tuple of sequences

(s(0), . . . , s(m)) ∈ Sm (5.15)

so that s(0) = s and for all l ≤ m there is a player il so that s(l) ∈ Sil,P (s(l−
1)). Let CP (s,m) denote the collection of (s,m)-chains. Lemma 5.3 below
states that for product priors that are closed from below, all chains must have
a repeating entry after some length M . This is an immediate consequence of
the finiteness of the set of ⊆∗

S-minimal sequences for product priors that are
closed from below.

Lemma 5.3. There is M ∈ N so that for every product prior P ∈ P that is
closed from below, every s ∈ SP and every chain (s(0), . . . , s(m)) ∈ CP (s,m),
there are ms,ms ≤ M so that

s(ms) = s(ms). (5.16)

We now construct the strategic automaton for Theorem 5.1. As men-
tioned earlier, we do so by extending the states in Ω. Fix s ∈ SP . For every
i define the set of (s,M)-chains that start with player i,

Ci,P (s) := {(s(0), . . . , s(M)) ∈ CP (s,M) : s(0)i = s(1)i}, (5.17)

where M ∈ N verifies the statement in Lemma 5.3. For m ∈ N, define the
m-th extended information set of s,

Im
i,P (s) := {(τm(s(0)), . . . , τm(s(M))) : (s(0), . . . , s(M)) ∈ Ci,P (s)}, (5.18)

where we use the short-hand τm(s̃) := τ(s̃0, . . . , s̃m), for all s̃ ∈ S. The m-th
extended information set of player i thus keeps track of the state in the m-th
coordinate of every sequence along a chain starting with player i. We will
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bootstrap the paths of our Markov chain from ⊆∗
S-minimal sequences in SP .

For the resulting Markov chain to satisfy OC, we need to keep track of all
chains and thus of all extended information sets of sequences in SP . We let
Im
P (s) := (Im

i,P (s))i and define the extended automaton state

ω̄m
P (s) = (τm(s), Im(s)). (5.19)

The collection of extended automaton states across all priors P ∈ P is finite
and is denoted Ω. We let the successor relation ≼ be defined by (ω, ι)≼(ω̂, ι̂)
when 1) ω ≼ ω̂, 2) for all i, all (J0, . . . , JM) ∈ ιi there is (Ĵ0, . . . , ĴM) ∈ ι̂i
so that for every l ≤ M , J l ≼ Ĵ l, and 3) for all i, all (Ĵ0, . . . , ĴM) ∈ ι̂i there
is (J0, . . . , JM) ∈ ιi so that for every l ≤ M , J l ≼ Ĵ l. Finally, we define the
label on extended automaton states β(ω, ι) := β(ω).

Construction of Paths We now proceed to specifying the paths in the
support of our Markov process. For every s ∈ SP the m-order branch t̄ms,P
is the ordered tuple of distinct elements in {ω̄n

P (s) : n ≤ m} according to
≼. For every m ∈ N let T m

P denote the collection of m-order branches. For
every t ∈ T m

P and any player i let

ti = (βi(t
0), . . . , βi(t

m)). (5.20)

In our construction of the Markov process, we will average over the proba-
bilities of paths that pass through the same branch. For this procedure to
preserve OCs, branches need to be of a certain length, m∗, which is bounded
by the parameters of the game. Lemma 5.4 below states that there is a length
m∗ so that for every ⊆∗

S-minimal sequence s ∈ SP , every player i and any
round n ≤ m∗, the branches of the minimal sequences in the support of si’s
beliefs, Si,P (si), have the same action labels as the branch of s at round n.

Lemma 5.4. There is m∗ ∈ N so that for all product priors P ∈ P that are
closed from below, for every s ∈ SP , every player i and every ŝ ∈ Si,P (si),

(t̄m
∗

s,P )i = (t̄m
∗

ŝ,P )i. (5.21)

We conclude from Lemma 5.4 that the support of the obedience con-
straints for ⊆∗

S-minimal types at every transition is preserved when repre-
sented as branches. We now bootstrap all paths in the support of our Markov
process by adding at most one cycle to each branch. Let m∗ satisfy the state-
ment in Lemma 5.4. For every branch t ∈ T m∗

P let C(t) and C̄(t) denote the
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first and terminal cycle in t = (t0, . . . , tm
∗
), respectively. For every s ∈ SP

and any choice of l ∈ N, define the path

v(s, l) := ((t̄m
∗

s,P )
0, . . . , C(t̄m

∗

s,P ), . . . , C(t̄m
∗

s,P )󰁿 󰁾󰁽 󰂀
l−1 times

, . . . , C̄(t̄m
∗

s,P ), . . . ). (5.22)

Define the set of paths of the Markov process

Ω := {v(s, l) : s ∈ SP , l ∈ N}. (5.23)

For every path v = (vm)m∈N ∈ Ω, define vi := (βi(v
m))m∈N. For every player

i define
Ωi(vi) := {v̂ ∈ Ω : v̂i = vi}. (5.24)

Construction of Markov Process In order to define the Markov process,
we must now assign probabilities to elements in K and the paths in Ω. For
every s ∈ SP , let its upper-contour set be denoted by

SP (s) := {s̃ ∈ SP : s ⊆∗
S s̃}. (5.25)

So we set
P ζ(k, v(s, l)) := ζ l(1− ζ) P ({k}× SP (s)), (5.26)

for any cycling probability ζ ∈ [0, 1], every s ∈ SP and l ∈ N. For every
s ∈ SP and type vi define the minimal number of loops required to bring a
⊆∗

S-minimal sequence into the information set of an arbitrary Markov-type
vi,

ℓ(s, vi) := min{l ∈ N : v(s, l) ∈ Ωi(vi)}. (5.27)

Lemma 5.5 below states that the ⊆∗
S-minimal sequences and the minimal

sequences in the support of their beliefs are always aligned. The result is an
immediate consequence of Lemma 5.4.

Lemma 5.5. For every s ∈ SP and any s̃ ∈ Si,P (s),

ℓ(s, vi) = ℓ(s̃, vi). (5.28)

Finally, we show that there exists ζ small enough so that the Markov
process P ζ is outcome equivalent to P , which concludes the argument.
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5.3 Characterization of Rationalizable Outcomes

We now show that the set of outcomes is characterized by a convex poly-
hedron. This result follows from the sufficiency of SCAMP established in
Theorem 5.1 and exploits the “simple” property in SCAMP. Let m∗ be the
length of branches used in the construction of the Markov process above. A

distribution p ∈ ∆(K × Ω
m∗

) satisfies OCs on Ω
m∗

if for every 0 < m ≤ m∗

and all si = (ω0
i , . . . ,ω

m∗
i ),

smi = bri(margk,sm−1
−i

(p(·, ·|si))). (5.29)

Let Om∗ ⊆ ∆(K × Ω
m∗

) denote the set of distributions on K × Ω
m∗

that

satisfy OCs. Let X∗ ⊆ K ×Ω
m∗

be the set of (k, (ω0, . . . ,ωm∗
)) so that ωm∗

is terminal. For p ∈ ∆(K×Ω
m∗

), define the conditional terminal probability
p̄ ∈ ∆(K × B),

p̄(k, b) =
󰁛

(ω0,...,ωm∗
)∈X∗:β(ωm∗

)=b

p((k, (ω0, . . . ,ωm∗
))|X∗). (5.30)

The conditional terminal probability p̄ satisfies limit-obedience if for every b
in its support and every player i,

bi = bri(p̄(·, ·|bi)). (5.31)

Let O∞ ⊆ ∆(K × B) denote the set of probabilities p̄ satisfying bi =
bri(p̄(·, ·|bi)) for all i and b in the support of p̄, i.e. satisfying limit-obedience.

LetO ⊆ O∞ denote the set of conditional terminal probabilities satisfying
limit-obedience which are obtained from distributions in p ∈ Om∗

, i.e.

O = {p̄ : p ∈ Om∗} ∩O∞. (5.32)

The relative closure of this set is a convex polyhedron:

Lemma 5.6 (Linearity of O). The relative closure of the set O is a convex
polyhedron.

Let O∗ ⊆ ∆(K×B) denote the set of Rationalizable Distribution, i.e. the
set of all outcome distributions that can arise under canonical priors

O∗ = {νP : P ∈ P}. (5.33)
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Theorem 5.2 (Rationalizable Distributions). O coincides with the set of
all Rationalizable distributions, O = O∗. Its relative closure is a convex
polyhedron.

Our main result regarding rationalizable distributions follows from our
sufficiency of SCAMP and the stationarity property of “simple” Markov pro-
cesses. Every distribution in Om∗

induces an average distribution on the
branches of the automaton just like a prior in P . So the averaging proce-
dure used to establish the sufficiency of SCAMP in Theorem 5.1 can be used
to map every distribution in Om∗

into a SCAMP. Since every branch has
at most one cycle (simple), its outcome distribution coincides with p̄. Con-
versely, every SCAMP induces a distribution in Om∗

through its marginal
probability on the first m∗ rounds.

5.4 Sufficiency of Additive Noise Information Struc-
tures

The automaton structure is derived from the recursive properties of ICR and
proved useful in establishing finite dimensional characterizations of outcome
distributions and information structures that obtain them. SCAMP bear
strong similarities to the email game by Rubinstein (1989). They can also
be represented as information structures that are widely used in economic
applications: Asynchronous information3 provision (as in Abreu and Brun-
nermeier, 2003), and a common state with additive noise (as in Carlsson and
Van Damme, 1993). Our main result thus establishes that those classes of in-
formation structures are “the same” and also sufficient to induce all outcomes
in any finite game.

For a profile of finite sets of signals (Xi)i, an Additive Noise Information
Structure (ANIS) consists of 1) µ ∈ ∆(K × 󰁔

i Xi), where each Xi is a
finite set of signals, and 2) a random time θ ∈ N with individual delays
τi ∈ {0, . . . , ni}, where ni ≤ |Ω|. Given a signal profile x ∈ 󰁔

i Xi and state
of nature k ∈ K, a random time θ with a geometric distribution and a profile
of bounded times (τi)i are drawn independently of each other. Every player
is privately informed of the vector xi ∈ Xi and her vector of times θ + τi.
Every player is then privately informed of a pair zi = (xi, yi), where

yi = θ + τi. (5.34)

3See Morris (2014) for a more complete overview.
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Theorem 5.3 (Sufficiency of ANIS). For every finite game, there exists
a profile of finite sets (Xi)i so that the set of Additive Noise Information
Structures on (Xi)i induces all outcome distributions.

Theorem 5.3 is an immedaite consequence of Theorem 5.1: Every SCAMP
can be decomposed into a random draw of an automaton branch, consisting
of the set of all states visited by a path, and a random exit time for every
cyclic state. Moreover, the support of every type’s beliefs when exiting a
cycle is bounded. At every state of nature and every branch, there is a
common exit time θ ∈ N. Each player is informed of some player-specific
exit time θ + τi, where SCAMP implies that τi is bounded. With her exit
time, each player i also receives a signal xi about the state of nature and the
automaton branch through her action labels βi.

ANIS are the combination of a one-dimensional additive noise information
structure and a finite set of signals (as large as there are branches on the
automaton). There are a few superficial differences to the original Global
Game introduced by Carlsson and Van Damme (1993). Firstly, in a global
game the random draw θ is directly payoff-relevant, while in our set-up it
is payoff-irrelevant but correlated with the payoff relevant state k. Since
the set of payoff-relevant states is finite, we need to disentangle types from
payoff-relevant states. Secondly, the noise term can be correlated with the
payoff-relevant state in our setting while it is independent in a Global Game.
Oyama and Takahashi (2011) provide an example where the dependence of
the noise on payoff relevant states is necessary to induce all outcomes. Lemma
5.3 thus establishes, that up to an additional finite signal, a global game with
state-dependent noise is sufficient for ICR.

SCAMP also has a straightforward dynamic interpretation: At every cycle
along a branch, a profile of signals is drawn at some random time with
geometric distribution. Players receive their private signal asynchronously
within some bounded time window. With asynchronous arrivals of private
signals, players may believe other players received their signal earlier, which
allows non-cyclic types (i.e. seeds), who receive their signal without delay, to
infect other types. The asynchronicity can be by design or interpreted as a
timing friction.
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6 Information Disclosure in Priority Auctions

In this section, we use SCAMP to study information design in priority sys-
tems.

In many situations where customers are served sequentially, such as board-
ing and check-in at airlines, delivery services for packages, food, or groceries
like Uber, Amazon, and Doordash, companies can charge their clients one or
several priority tiers that determine the order in which they are served.

How useful it is for customers to pay for higher tiers depends both on the
quality of the service, total demand, and how many other customers access
priority tiers. Companies can then disseminate information and price tiers
strategically in order to increase their revenue.

Customers can pay for higher priority, but if too many of them buy the
higher priority class, then the utility of the service is diminished. In the
specification below, the externality can vary with the quality. As we will
show below, having a higher externality for higher quality allows the seller to
extract approximately all the surplus via information design. In particular,
we construct a SCAMP/ANIS to implement an information structure that
extracts approximately all the surplus for the seller.

6.1 Model

Two buyers want to use a service of unknown quality4 k ∈ K = {1, . . . , k̄},
where k̄ > 0. The quality is distributed according to a full support distri-
bution PK ∈ ∆(K). Each buyer i ∈ {1, 2} chooses a priority ai ∈ A =
{0, . . . , n} at a cost normalized to ai, where n > 2. The service can be con-
sumed by both buyers simultaneously, but each buyer prefers to be serviced
first. Buyer i’s utility for the service with quality k when bidding a priority
ai and j bid priority aj is given by:

ui(k, ai, aj) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

k − ai, if aj < ai,

αkk − ai, if 0 < ai = aj,

0, otherwise,

(6.1)

where αk ∈ [0, 1] represents an externality of consuming the service simul-
taneously when the quality is k and the utility of consuming last is set to
zero.

4We let K be an interval of N to simplify the analysis.
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Since rationalizability is set-valued, we must specify a selection rule to
evaluate rationalizable outcome distributions. We take an adversarial ap-
proach by considering the worst possible selection from the perspective of
the seller. The revenue guarantee for the seller at a canonical prior P ∈ P
with outcome distribution νP is defined as

V (P ) =
󰁛

k,b

min
ai∈bi,aj∈bj

(ai + aj) νP (k, b). (6.2)

Assume that for every k there is a ∈ A such that a ≤ αkk, that is, when
the quality is commonly known to be k, there is a choice of priority, so that
consuming simultaneously is better than consuming last. We then set ak the
least priority with this property: ak = max{a ∈ A : a ≤ αkk}.

6.2 Complete Information Benchmark

As a benchmark, we compute the outcomes when the quality is publicly
observed. Let Ri(k) ⊆ A denote the set of player i’s ICR actions when quality
k is publicly announced. The result below characterizes rationalizable bids
when the externality of simultaneous consumption is either low (i.e.αk is
large), or high.

Lemma 6.1. Ri(k) =

󰀻
󰀿

󰀽
0, . . . , ak if αk >

k−1
k

ak otherwise.

Proof. Assume first αk > k−1
k

and let aj ≤ ak. In this case, playing ai = aj
is strictly preferred to playing ai > aj in state k. Playing ai = aj is weakly
preferred to ai < aj if αkk ≥ aj. We deduce that every ai ≤ ak is a best-
reply to itself in state k, hence is rationalizable. Moreover, every a > ak is
dominated in state k by ak.

Now assume αk ≤ k−1
k
. In this case, bid a1 dominates 0, and once 0 is

eliminated a2 dominates a1. We recursively eliminate dominated strategies
a1, . . . ak−1 by successive outbidding. is a best-reply as long as αkk ≥ aj.

6.3 Upper Bound: Almost full extraction

We provide an upper bound on the payoff guarantee. The bound below
corresponds to approximate full surplus extraction: it requires that both
players play the highest action ak that would be rationalizable under common
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knowledge at each state k. Note that, by linearity of the payoffs and the
required consistency with a common prior, signals that persuade the buyers
of higher quality are always offset by signals that persuade the buyer of a
lower quality. Hence the seller cannot, in expectation, induce bids that are
higher than the average of (ak)k. By definition, this extracts as much surplus
from the buyer as possible. As we make the grid of possible bids finer, the
surplus retained by the buyers, i.e. ak − αkk, shrinks to zero.

Lemma 6.2. For every P ∈ P,

V (P ) ≤
󰁛

k∈K
2ākPK(k).

Proof. Let P ∈ P . For every player i and type si, no bid above EP (αkk|si)
is rationalizable. To see this, note that for any choice aj > EP (αkk|si) of
player j ∕= i, no action greater than aj − 1 is a best response for si. Since

V (P ) ≤
󰁛

s∈S
(EP (αkk|si) + EP (αkk|sj))P (s)

≤ 2EP (αkk) =
󰁛

k∈K
2akPK(k).

(6.3)

We show that for certain parameters, there is a SCAMP/ANIS that actu-
ally attains the upper bound derived above: if αk̄ ≤ k̄−1

k̄
and αk >

k−1
k

for all

k < k, then the upper bound is attained by an ANIS information structure
where every player i is privately informed of the following signal:

zi = (ak, θk + εi), (6.4)

where ak ∈ K, θk ∈ N and εi ∈ {0, 1} is player and quality specific noise. The
first component ak corresponds a private action recommendation similar to
the canonical signals of a correlated equilibrium and the second component
θk + εi is the additive noise component, similar to the canonical signals in
global games.

6.4 SCAMP/ANIS

In Figure 7 we show an automaton that attains the upper bound provided
above: all terminal nodes have singleton action labels given by ak, for every
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k and every player. Indeed, each automaton state in Figure 7 contains an
action set for each player of the form {a, . . . , ak}, where a ≤ ak. These action
sets are identified in the figure by their minimal action. For example the

node containing “
ak

ak + 1
′′ represents an automaton state labeled with action

sets {ak, . . . , ak} for player 1 and {ak + 1, . . . , ak} for player 2. In order
to show that the payoff bound can be attained by some SCAMP/ANIS, it
will be enough to find transition probabilities on the automaton so that OC
holds. We will provide conditions for parameters (αk)k so that the automaton
depicted below admits a SCAMP.

start at k < k̄ start at k̄

ak

ak

ak + 1

ak

ak

ak + 1

ak

āk̄

āk̄
ak

ak + 1

āk̄

āk̄
ak + 1

āk

āk̄

āk̄
āk

āk
āk

āk
āk

āk̄
āk̄

q
k

qk/2 qk/2

(1− ζk)

ζk/2 ζk/2

Figure 7: SCAMP Automaton

The SCAMP automaton in Figure 7 has two key parameters for ev-
ery quality k ∈ K: ζk and qk. The parameter qk parametrizes the tran-
sition probabilities on the right part of the automaton when the state is
k̄. Positive qk means that any player observing a sequence of the form
(ak, ak + 1, . . . , āk, āk, . . . ) is uncertain if the quality is k or k̄. By at-
taching just the right probability to k̄, we can make OC hold for that se-
quence. The parameter ζk appears on the left part of the automaton and
parametrizes the probability of exiting the cycle. After observing a sequence
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(ak, ak, ak + 1, . . . , āk, āk, . . . ), a player knows that the state is k, but may
not know if their opponent knows this.

Proposition 6.1 below states that, under certain conditions on the pa-
rameters (αk)k, the automaton in Figure 7 can be populated with transition
probabilities (ζk, qk)k so that OC holds for all sequences. This establishes
our (approximate) surplus extraction result:

Proposition 6.1 (Optimal Information Disclosure: ANIS). Suppose αk̄ ≤
k̄−1
k̄

is close enough to one so that ζk ∈ (0, 1) for all k < k and suppose

αk > k−1
k

for all k < k. Then for every PK the ANIS described in (6.11)
attains the upper bound payoff guarantee in Lemma 6.2.

The relevant conditions for a SCAMP/ANIS to extract (approximately)
all of the surplus are twofold and can be explained using Lemma 6.1: first,
the externality of simultaneous consumption at the highest quality k, i.e.
1−αk, must be large enough. This means that at the highest level of quality,
players always prefer to outbid their opponent so as to avoid a tie, whenever
outbidding can be profitable given a player’s first order beliefs. Our SCAMP
ensures that, conditional on the quality actually being highest, some type of
a player will be informed of that fact. Second, when the quality is not k, the
externality, i.e. 1−αk is low. Under complete information, Lemma 6.1 implies
that all bids below ak are rationalizable because simultaneous consumption
is less taxing. However, if players believe with enough probability that their
opponent only plays the highest rationalizable bid, they will match that
bid. This information structure is thus a straightforward generalization of
the Electronic Email game in Rubinstein (1989): A few types (those who
believe the quality to be highest) infect all other types and make them play
the maximal bid. Unlike the single agent information design problem, as
discussed in Kamenica and Gentzkow (2011), our information structure does
not achieve the payoff bound only by introducing uncertainty about payoff-
relevant parameters, but instead uses higher-order uncertainty to select the
highest rationalizable action that would be played under common knowledge.
Note that this example requires that there are more than two bids, i.e. n > 2.
It can readily be shown that in the binary bid game, bidding zero is in
fact a risk dominant equilibrium and so constructing an email game (as in
Rubinstein (1989)) would not allow the seller to extract all the surplus in
that case.

ANIS admits a natural dynamic interpretation: Players receive a private
signal about the quality ak asynchronously within some time window around
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θk. The signal ak contains a minimal bid recommendation. Signals indicating
the highest quality arrive early.

Obedience Constraints We now state the OC and check for which set of
parameters the OC have a solution. For every k ∈ K and m ∈ N, define the
type

sk,m,i = (0, . . . , ak, . . . , ak󰁿 󰁾󰁽 󰂀
m times

, ak + 1, . . . , ak, ak, . . . ). (6.5)

We start by deriving conditions that ensure OC of types that never cycle
hold:

First-order Beliefs given sk,1,i for k ∕= k are proportional to

P (k′, sk,1,i) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

ζk′
2
P (k′), if k′ = k

qk
2
P (k′), if k′ = k

0, otherwise.

(6.6)

and for k = k,

P (k′, sk,1,i) =

󰀻
󰀿

󰀽
P (k), if k′ = k

0, otherwise.
(6.7)

To ease notation, let Qk = P (k̄|sk,1,i). To check OC, we require outbidding
to be a best-reply if and only if aj < αkk. The expected payoff when bidding
αkk and tying (left hand side) should be equal to the expected payoff when
bidding αkk + 1 and winning (right hand side):

Qkαkk + (1−Qk)αkk − αkk = Qkk + (1−Qk)k − αkk − 1

Qk(1− αk)k + (1−Qk)(1− αk)k = 1

Qk =
1− (1− αk)k

(1− αk)k − (1− αk)k

(6.8)

Since 1 > k(1− αk) for all k < k and 1 < k̄(1− αk̄), we set qk and ζ so that

Qk =
qk/2P (k)

ζk/2P (k) + qk/2P (k̄)
. (6.9)

That is, qk = 21−(1−αk)k
P (k̄)

and ζk = 2
(1−α

k
)k−1

P (k)
. We assume that ζk is arbitrarily

small by letting αk̄ be arbitrarily close to one.
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We proceed with the OCs at sk,m,i for m > 1:

P (k, sk,m,i, sk,n,−i) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

P (k)(1− ζk)
m ζk

2
, if n = m

P (k)(1− ζk)
m−1 ζk

2
, if n = m− 1

0, otherwise.

(6.10)

Bidding ai = ak when player j also bids ak at round n ≤ m requires

P (k)(1− ζk)
m ζk
2
(αkk − ai) ≥ ((1− ζk)

m−1(k − ai − 1) + (1− ζk)
mαkk − ai − 1)P (k)

ζk
2

αkk − ai ≥
(1− ζk)

m−1

(1− ζk)m
(k − ai − 1) + αkk − ai − 1

1 ≥ 1

1− ζk
(k − ai − 1)

which for ζk small enough holds whenever 2 ≥ k−ak. So bidding ai ≥ ak+1
at round n ≥ m+ 1 requires

(1− ζk)
m ζk
2
(k − ai) + (1− ζk)

m−1 ζk
2
(αkk − ai) > (1− ζk)

m ζk
2
(αkk − ai − 1)

(1− ζk)(k − ai) + (αkk − ai) > (1− ζk)(αkk − ai)− (1− ζk)

(1− ζk)k + ζkαkk > ai − 1 + ζk

Which for ζk small enough holds when k − ak > −1.
Consider the ANIS on K×Z1×Z2, where Zi is the set of possible signals

that can arise from (6.4), so that for each k ∈ K,

Pr(θk = n|k) =

󰀻
󰀿

󰀽
ζ∗k(1− ζ∗k)

n, if k ∕= k̄

1n=0, otherwise.

Pr(ak̃|k) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

(1− q∗k), if k̃ = k

q∗k, if k̃ = k̄

0, otherwise.

Pr(εi,k = 0|k) = 1− ζ∗k
2− ζ∗k

q∗k =
1− (1− αk)k

P (k̄)
, ζ∗k =

(1− αk̄)k̄ − 1

P (k)

(6.11)
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7 Discussion

7.1 Structure and Complexity of SCAMP

Consider the strategic automaton used to establish Theorem 5.1. In the
course of the construction, we show that its size is bounded. OCs of SCAMP
may nevertheless be complex due to cycles allowing paths to be “out of sync”.
However, the property of “simple” in SCAMP implies that OCs only contain
a bounded number of terms. A process P has bounded obedience constraints
if there is L ∈ N so that for every player i every type si in the support of P
and every round m,

|{(k, v) ∈ K × Ω
N
: P (k, v|si) > 0}| ≤ L. (7.1)

The following result is then an immediate consequence of “simple”:

Corollary 7.1 (Bounded OC of SCAMP). Every SCAMP has bounded obe-
dience constraints.

In the example of Section 2 we moved from an automaton with multiple
cycles (Figure 2) to an automaton with only one cycle (Figure 3), where we
only kept the lowest cycle. Any SCAMP on this automaton has the property
that the beliefs of every type are finitely supported: A player who transitions
from ab to a at round m knows that the cycle was left within two rounds
after or before round m. However, the cycling probability may depend on
the branch and the state of nature.

7.2 Solution Concepts

The subsequent discussion motivates the requirement for ICR in information
design as opposed to that of correlated equilibria.

In the framework of correlated equilibria, an information structure im-
plements a distribution of outcomes if there is at least one Nash equilibrium
in the corresponding Bayesian game that results in the desired distribution.
It is acknowledged, however, that multiple equilibria might exist within the
Bayesian game, potentially leading to alternative outcome distributions. Im-
plicit in this approach is the assumption that the information designer is not
only responsible for the dissemination of information but also possesses the
capability to direct players toward coordination on a specific Nash equilib-
rium.
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Rationalizability does not assume coordination on an equilibrium but
only common certainty of Bayesian rationality, hence iterative deletion of
(strictly) dominated strategies. It is a set solution concept, and in gen-
eral, more than one outcome can survive the iterative deletion of dominated
strategies. Rationalizable distributions include the set of distributions that
are implementable in dominant strategies. This concept is thus both weaker
than implementation in dominant strategies, and stronger than Nash imple-
mentation.

Our results are built on the recursive structure of ICR. For supermodular
games, ICR and Bayes-Nash equilibrium (BNE) make the same predictions
regarding extremal outcomes. More generally, Liu (2015) shows that a sub-
jective version of Belief invariant Bayes correlated equilibrium is equivalent
to ICR. We thus expect analogous results and structures to arise under Be-
lief Invariant Bayes Correlated Equilibrium and leave that extension and the
extension to BNE in general games for future work.

7.3 Relation to Literature

SCAMP can be viewed as a generalization of the e-mail game in Rubinstein
(1989), where a type corresponds to the number of emails sent before a
message was lost. Similar models of information were used in Oyama and
Takahashi (2020), Morris et al. (2020) and Halac et al. (2021) for instance.
These models have the advantage of being economical in parameters and are
examples of SCAMP for binary action games with different interpretations.
In the model of global games (Carlsson and Van Damme, 1993; Morris and
Shin, 2003), a type to a player corresponds to a (usually unidimensional)
noisy signal about the underlying state of nature. These models offer good
interpretability and can easily yield comparative statics such as the relative
precision of players’ signals. However different in nature, one being a discrete
model, and the other one continuous, the information structure in the email
game and in global games appear to be deeply connected. In fact, both
models allow to encompass rich systems of higher-order beliefs and capture
contagion phenomena through which dominant actions unravel.

At a more fundamental level, both models exhibit the same relationship
between types. In the email game, when a player stops receiving message
confirmations, either the message sent to the other player was lost, or the
subsequent confirmation from that player was lost, and this relationship is
essentially independent of the number of messages sent. In global games,
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when conditioning on the observation of a signal, typical signals received by
other players are either slightly higher, or slightly lower, and this relationship
is here too independent of the value of the signal observed. Both models
satisfy a form of translation invariance of beliefs, which is captured by our
Markov property. With SCAMP we isolate this aspect of information design
and show that it is all you need to generate all rationalizable outcomes in
any finite game.
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A Appendix

The set of nonnegative integers is denoted N and the set of positive integers
is denoted N>0. For any family of sets (Xi)i, we let X =

󰁔
i Xi and X−i =󰁔

j ∕=i Xj, for every i. For a family of maps fi : Xi → Yi, we let f : X → Y
be given by f(x) = (fi(xi))i for x ∈ X and f−i : X−i → Y−i by f−i(x−i) =
(fj(xj))j ∕=i for x−i ∈ X−i. Given a measurable set X, ∆(X) denotes the set
of probability distributions on X. A marginal on coordinates x1, . . . , xn of a
distribution P ∈ ∆(

󰁔
ℓ Xℓ) is denoted margx1,...,xn

(p).
We use the following notation. For every player i let Bi = 2Ai \ {∅}

denote the set of non-empty action sets of player i.
For any subset of action set profiles B′ ⊆ B, let max⊆ B′ ⊆ B′ denote

the collection of maximal profiles in B′ with respect to set inclusion.

A.1 Theorem 4.1: Revelation Principle

Theorem 4.1 For P ∈ ∆(K × BN) the three conditions are equivalent:

1. P ∈ P,

2. P = PS, i.e. P is the image of itself viewed as a common prior,

3. P satisfies P (s0 = A) = 1 and the family of obedience constraints:

smi = bri(margk,sm−1
−i

(P (·, ·|si))) for a.e. si = (smi )m. (A.1)

Proof. (1. =⇒ 3) Let P ∈ ∆(K × T ) be a common prior. The induced
profile of conditional probabilities (Pi : Ti → ∆(K×T−i))i is a Harsanyi type
space and so the profile of maps ((Rm

i )m : Ti → Si)i satisfies: for every player
i, ti ∈ Ti and m ∈ N,

Rm
i (ti) = bri(Pi(ti) ◦ (id× Rm−1

−i )−1). (A.2)
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Then note that for every bi ∈ Bi, bri(bi)
−1 ⊆ ∆(K × B−i) is convex. Write

P̃ := P ◦ (id × R)−1 with conditional probabilities (P̃i : Si → ∆(K × S−i)i
and so for all k ∈ K, m ∈ N and s ∈ S so that P (R−1

i (si)) > 0,

smi = bri

Ç󰁝

{ti:Rm
i (ti)=smi }

Pi(ti) ◦ (id× Rm−1
−i )−1dP (ti|Rm

i = smi )

å

= bri
Ä
P̃i(si)

ä
.

(A.3)

So P̃ satisfies (A.1), as required. (3. =⇒ 2) If P ∈ ∆(K × BN) satisfies
(A.1) then, in particular it is a common prior with type profiles given by
S. Since ICR is characterized exactly by (3.3), we deduce that P = PS. (2.
=⇒ 1) P = PS implies that P ∈ P , which concludes the proof.

A.2 Theorem 5.1: Sufficiency of SCAMP

A.2.1 Monotonicity Property of br

A monotone stochastic transformation for player i is a map ρi : K × B−i →
∆(B−i) so that for every b ∈ B and k ∈ K,

b′−i ⊆ b−i, ∀ b′−i ∈ supp(ρi(k, b−i)). (A.4)

Claim A.1 (Monotonicity of br). For any monotone stochastic transforma-
tion ρi : K × B−i → ∆(B−i) and for any pi ∈ ∆(K × B−i),

bri(pi ◦ ρi) ⊆ bri(pi), (A.5)

where for all k ∈ K and b−i ∈ B−i,

pi ◦ ρi(k, b−i) :=
󰁛

b′−i∈B−i

ρi(b−i|k, b′−i)pi(k, b
′
−i). (A.6)

Proof. Consider any conjecture σi : K×B−i → ∆(A−i) so that supp(σ(·|k, b−i)) ⊆
b−i for all k ∈ K, b−i ∈ B−i. Now define the conjecture σi ◦ ρi, which for
every a−i ∈ A−i, k ∈ K, b′−i ∈ B−i is given by

σi ◦ ρi(a−i|k, b′−i) :=
󰁛

b−i

σi(a−i|k, b−i)ρi(b−i|k, b′−i). (A.7)
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Since ρi is monotone, the conjecture σi◦ρi also satisfies the support constraint
of σi. Hence

〈σi, pi ◦ ρi〉(k, a−i) =
󰁛

b′−i∈B−i

Ñ
󰁛

b−i∈B−i

σi(a−i|k, b−i)ρi(b−i|k, b′−i)

é
pi(k, b

′
−i)

=
󰁛

b′−i∈B−i

σi ◦ ρi(a−i|k, b′−i)pi(k, b
′
−i)

= 〈σi ◦ ρi, pi〉(k, a−i).

(A.8)

Now the result is immediate from the definition of bri in expression (3.2).

The set of conjectures on automaton states ΣB is the set of random se-
lections σ : K × B−i → ∆(A−i), where for every k, b, σ(b−i|k, b−i) = 1. For
every (k, s) ∈ K×S, player i and round m, define the minimal and maximal
conjectured payoff increments between ai, a

′
i ∈ Ai respectively as,

um
i,ai,a′i

(k, s) := min
σ∈ΣB

󰁛

a−i∈sm−i

σ(a−i|k, sm)(ui(k, ai, a−i)− ui(k, a
′
i, a−i))

um
i,ai,a′i

(k, s) := max
σ∈ΣB

󰁛

a−i∈sm−i

σ(a−i|k, sm)(ui(k, ai, a−i)− ui(k, a
′
i, a−i)).

For every player i and s ∈ SP define i’s information set

Si,P (vi) := {s̃ ∈ SP : s̃i = si}. (A.9)

The expected payoff increments are denoted

Um
i,P (si, ai, a

′
i) :=

󰁛

(k,ŝ)∈K×Si,P (si)

um
i,ai,a′i

(k, ŝ)P (k, ŝ),

U
m
i,P (si, ai, a

′
i) :=

󰁛

(k,ŝ)∈K×Si,P (si)

um
i,ai,a′i

(k, ŝ)P (k, ŝ).
(A.10)

OCs can be grouped into two sets of constraints:

(i) Sub-obedience: ∀ a′i ∈ smi \ sm+1
i , ∃ ai ∈ sm+1

i s.t. 0 < Um
i (si, ai, a

′
i),

(ii) Super-obedience: ∀ ai ∈ sm+1
i , ∀ a′i ∈ Ai, 0 ≤ U

m
i (si, ai, a

′
i).

42



A.2.2 Closed from Below

For every P ∈ P , define the sequence support

SP := {s ∈ S : P (s) > 0}. (A.11)

Lemma A.1. For every P ∈ P there is outcome equivalent prior P ∗ ∈ P
that is closed from below.

Proof. Define the partial order on sets of sequences V, V ′ ⊆ S: V ≪ V ′ if
and only if for every s ∈ V there is s′ ∈ V ′ so that s ⊆∗

S s′ and for every
s′ ∈ V ′ there is s ∈ V so that s ⊆∗

S s′. Let

B := {V ⊆ S : ∀ s, s′ ∈ V, S(s, s′) ∕= ∅ =⇒ S(s, s′) ∩ V ∕= ∅} . (A.12)

For any distribution ν ∈ ∆(K ×B) define the best response correspondence

Bν(V ) :=
󰁞

p∈∆(K×S) s.t. νp=ν, and V⊆Sp

br(p), (A.13)

where for every p ∈ ∆(K × S),

br(p) :=
ß󰀓

(bri(margk,sm−i
(p(·, ·|si))))i

󰀔

m∈N
: s ∈ Sp

™
. (A.14)

Note that for any outcome distribution ν ∈ ∆(K × B), Claim A.1 implies
that the Bν operator is monotonic in ≪. Moreover, it can be shown that
for every V ∈ B, Bν(V ) ∈ B. By Knaster-Tarski’s fixed point theorem, Bν

admits a fixed point in B. We conclude that there is a canonical prior P ∗

that is closed from below with outcome distribution ν.

Let P∗ denote the collection of priors in P which are closed from below.
Let SP denote the collection of minimal sequences in SP ,

SP := min
⊆∗

S

SP . (A.15)

Lemma A.2. There exists M ∈ N so that for all P ∈ P∗,

|SP | ≤ M. (A.16)

Proof. The number of minimal elements S := min⊆∗
S
S is finite. Picking

M := |S| yields the result.
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A.2.3 Closed from Below Product Priors

Lemma A.3. Every prior P ∈ P∗ admits an outcome-equivalent product
prior P ′ ∈ P∗.

Proof. Fix a pair of sequences s, ŝ ∈ SP satisfying ŝi ⊆∗
Si

si. For any i and
󰂃 ∈ (0, 1), define the perturbed prior

P󰂃(k, s̄) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

(1− 󰂃)P (k, s̄), if s̄ = ŝ

󰂃P (k, ŝ), if s̄ = (si, ŝ−i)

P (k, s̄), otherwise.

(A.17)

We show that there is 󰂃 small enough so that the perturbed prior is outcome
equivalent to P . For any m ∈ N and player i, let Rm

i,P󰂃
(·) represent the m-th

round of ICR for player i under prior P󰂃. We start with m = 1 and j ∕= i.
Then we have that R1

j,P󰂃
(s̃j) = s̃1j for all s̃ ∈ SP󰂃 . Moreover, R1

i,P󰂃
(s̃i) = s̃1i ,

for all s̃i ∕= si in the support of P󰂃. For si we have that

P󰂃(k, si) = P (k, si) + 󰂃P (k, ŝi). (A.18)

Hence R1
i,P󰂃

(ŝi) = ŝ1i ⊆ R1
i,P󰂃

(si) ⊆ s1i . Deduce that there is 󰂃 small enough
so that sub-obedience holds for any type of any player under the perturbed
prior P󰂃. In particular, Rm

i,P󰂃
(ŝi) ⊆ Rm

i,P󰂃
(si), for all m ∈ N. To establish

outcome equivalence, note that for all m, s ∈ SP and player i,

lim
n↑∞

sni ⊆ Rm
i,P󰂃

(si). (A.19)

Let v̂ = (Rm
P󰂃
(ŝ))m, v = (Rm

P󰂃
(s))m and let P̄󰂃 := P󰂃 ◦ (id×󰁔

m Rm
P󰂃
)−1 denote

the corresponding canonical prior. Then we have that (vi, v̂−i) ∈ SP̄󰂃
.

Next, consider the perturbed prior

P ′
󰂃(k, s̄) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

(1− 󰂃)P (k, s̄), if s̄ = s

󰂃P (k, s), if s̄ = (ŝi, s−i)

P (k, s̄), otherwise.

(A.20)

Let v̂′ = (Rm
P ′
󰂃
(ŝ))m, v′ = (Rm

P ′
󰂃
(s))m and let P̄ ′

󰂃 := P ′
󰂃 ◦ (id × 󰁔

m Rm
P ′
󰂃
)−1

denote the corresponding canonical prior, where Rm
P ′
󰂃
denotes the mth round

of delection of R under prior P ′
󰂃 . Analogous arguments as before show that

(v̂′i, v−i) ∈ SP̄ ′
󰂃
, where P̄ ′

󰂃 is outcome equivalent to P . Finally, note that if P
is closed from below, then so are both P̄󰂃 and P̄ ′

󰂃 . One can thus easily mix
over all such priors to obtain a product prior.
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Lemma A.4. Every product prior that is closed from below has a seed.

Proof. Let s ∈ SP and suppose there is ŝ ∈ Si,P (s)\SP . Then there is ŝ ∈ SP

so that ŝ ⊆∗
S ŝ. Consider the sequence s̄ = (ŝi, ŝ−i). Note that s̄ ⊆∗

S ŝ. Since
P is a product prior, s̄ ∈ SP and so ŝi ∕= ŝi. But then consider s̃ = (ŝi, s−i),
which again must be in SP , a contradiction.

A.2.4 Construction of Automaton and Paths

Lemma A.5. There is M ∈ N so that for every product prior P ∈ P∗, every
s ∈ SP , and every chain (s(0), . . . , s(m)) ∈ CP (s,m), there are ms,ms ≤ M
so that

s(ms) = s(ms).

Proof. By Lemma A.4, P has a seed and by Lemma A.2 there is M so that
for all product priors P ∈ P∗, |SP | ≤ M . For every s ∈ SP and any chain
(s(0), . . . , s(m)) ∈ C(s,m) we thus have that ms ≤ M , where

ms := min{n ≤ m : ∃ l < n, s.t. s(n) = s(l)}. (A.21)

Hence the result.

Lemma A.6. There is m∗ ∈ N so that for all product priors P ∈ P∗, for
every s ∈ SP , every player i and every ŝ ∈ Si,P (si),

(t̄m
∗

s,P )i = (t̄m
∗

ŝ,P )i. (A.22)

Proof. Fix m ∈ N and suppose that ω̄m
P (s) = (ωm, ιm) ∕= (ωm+1, ιm+1) =

ω̄m+1
P (s). Then we must have that ιmj ∕= ιm+1

j , for some player j. Suppose

without loss of generality that there exists (Jm(0), . . . , Jm(M)) ∈ ιmj \ ιm+1
j .

Then we have that

(τm(ŝ), Jm(0), . . . , Jm(M − 1)) ∈ ι̂mi \ ι̂m+1
i . (A.23)

Deduce that for all m ∈ N, ω̄m
P (s) ∕= ω̄m+1

P (s) ⇐⇒ ω̄m
P (ŝ) ∕= ω̄m+1

P (ŝ) and so
in particular, (t̄m

∗
s,P )i = (t̄m

∗
ŝ,P )i for any m∗ greater than the convergence time

of (ωn
P (s))n, i.e. greater than

m(s) := min{n ∈ N : {ωh
P (s) : h ≤ n} = {ωh

P (s) : h ∈ N}}. (A.24)

We thus let m∗ := maxs∈SP
m(s).
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Lemma A.7. For every s ∈ SP and any s̃ ∈ Si,P (s),

ℓ(s, vi) = ℓ(s̃, vi). (A.25)

Proof. This is an immediate consequence of the construction ofΩ and Lemma
A.6.

For every ṽ ∈ Ω let ℓ∗(ṽ) and s∗(ṽ) satisfy ṽ = v(s∗(ṽ), ℓ∗(ṽ)). Define the
minimal information set

Ωi(vi) := {ṽ ∈ Ωi(vi) : ℓ
∗(ṽ) ≤ ℓ∗(v̂), ∀ v̂ ∈ Ωi(vi)}. (A.26)

Let ℓ(vi) := minṽ∈Ωi(vi)
ℓ∗(ṽ).

A.2.5 Obedience

Lemma A.8. There is a cycling probability ζ so that P̄ζ satisfies sub-obedience
for every m ∈ N, every player i and every type vi.

Proof. Expected minimal conjectured payoff increments between ai, a
′
i ∈ Ai

take the form:

Um
i (vi, ai, a

′
i) =

󰁛

(k,v)∈K×Ω̂i(vi)

um
i,ai,a′i

(k, v)P̄ζ(k, v) > 0, (A.27)

where, by replacing Ω̂i(vi) with Ω̂i(vi), U
m
i (vi, ai, a

′
i) is bounded from below

by
󰁛

(k,v̂)∈K×Ω̂i(vi)

um
i,ai,a′i

(k, v̂)
󰁛

(s,l)∈SP×N : v̂=v(s,l)

ζ l(1− ζ)P ({k}× SP (s)) (A.28)

By Lemma A.7, we have that

lim
ζ↓0

Um
i (vi, ai, a

′
i)

ζℓ(vi)
=

󰁛

(k,v̂)∈K×Ω̂i(vi)

um
i,ai,a′i

(k, v̂)
󰁛

s∈SP :v̂=v(s,ℓ(vi))

P ({k}× SP (s)).

(A.29)
Since P ∈ P∗ has a seed, we conclude that

lim
ζ↓0

Um
i (vi, ai, a

′
i)

ζℓ(vi)
> 0. (A.30)

Then there is ζ ∈ (0, 1) small enough so that

Um
i (vi, ai, a

′
i) > 0, (A.31)

which concludes the proof.
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Lemma A.9 (Outcome Equivalence). P̄ζ is outcome equivalent to P .

Proof. For every m ∈ N and every path v in the support of P̄ζ , let R
m
P̄ζ
(v) de-

note the m-th round of ICR under prior P̄ζ . It follows from the monotonicity
of br (See Claim A.1) that for all m ∈ N,

lim
n↑∞

β(vn) ⊆ Rm
P̄ζ
(v). (A.32)

By Lemma A.8 we conclude that P̄ζ is outcome equivalent to P .

Corollary A.1 (Outcome Equivalent SCAMP). Every P ∈ P admits an
outcome-equivalent SCAMP.

A.2.6 Outcome Distributions

Lemma 5.6. The relative closure of the set O is a convex polyhedron.

Proof. Clearly, the relative closure of Om∗
and that of O∞ are convex poly-

hedra. Consider the un-scaled limit measure p∗,

p∗(k, b) :=
󰁛

(ω0,...,ωm∗ )∈X∗:β(ωm∗ )=b

p∗(k,ω). (A.33)

Then we have that the relative closure of {p∗ : p ∈ Om∗} is a convex poly-
hedron. Finally, note that the collection {pm∗

(X∗) : p ∈ Om∗} ⊆ [0, 1] is
convex and thus equal to an interval [x, x]. Then we have that

{p : p ∈ Om∗} =

®
1

x
p∗ : p ∈ Om∗

, x ∈ [x, x]

´
∩∆(X∗). (A.34)

Indeed, each p∗ has a unique x ∈ [x, x] so that 1
x
p∗ ∈ ∆(X∗), we obtain O as

the intersection of a cone and a simplex, making it a convex polyhedron.

Theorem 5.2. O coincides with the set of all Rationalizable distribu-
tions, O = O∗. Its relative closure is a convex polyhedron.

Proof. We now show that O coincides with the set of all outcome distribu-
tions. For every p ∈ O there is a distribution p∗ on K × Ωm∗

and a subset
X∗ ⊆ Ωm∗

so that p = p∗|X∗ . Let p∗ be represented on the strategic automa-
ton verifying Theorem 5.1. Then p∗|X∗ induces a distribution on the branches
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of the automaton and thus a transition probability µp∗ : K×Ω → ∆(Ω). Us-
ing the arguments used to establish Theorem 5.1 we find a cycling probability
ζ so that the Markov process induced by µp∗ , ζ,margK(p) is SCAMP with
outcome distribution p. We thus obtain our characterization of rationalizable
outcomes in Theorem 5.2.
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