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Study of a game when information varies

What outcomes?
What is the power of information? What outcomes can a designer
implement by information dissemination?

What information?
Information design: How to implement outcomes

What model?
Revelation principle: Sufficient and minimal model of information
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Benchmark: Correlated Equilibria

Aumann, 74, 87, Forges 93, Bergemann Morris 16

Information Game
Nash Equilibrium

Correlated Equilibrium Distribution (ced): Distribution on game
outcomes induced by some Nash equilibrium for some information

Revelation Principle

All ced are induced in the following way
1/ Information: each player is informed of a recommended action
2/ Nash equilibrium: each player plays the recommended action

Characterizes what can be obtained and how to obtain it assuming the
designer can choose 1/ information and 2/ the Nash Equilibrium
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What can be implemented in all Nash equilibria?

Interim Correlated Rationalizablility (Dekel Fudenberg Morris 07):
iterative deletion of dominated strategies

Information Game
ICR

Rationalizable Distribution: Distribution on the actions of the game
induced by ICR for some information

Morris Oyama Takahashi 22: Rationalizable distributions for binary
actions supermodular games

Open problem for all games
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Stationary Canonical Automaton Markov Priors (SCAMP)

Simple information structures implement all rationalizable distributions

1 Characterize and compute rationalizable distributions

2 Design information structures

Generalize email game and information structures in OT (21) MOT (22)
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Plan

1 Interim Correlated Rationalizability

2 SCAMP

6 / 17



Interim Correlated Rationalizability

Game with incomplete info:K , (Ai )i , ui : K × A → R, Bi = P(Ai )

Best-responses to pi ∈ ∆(K × B−i ):

Conjecture σ(k, b−i ) ∈ ∆(b−i ) for every k ∈ K , b−i ∈ B−i

BRi (pi ) =
⋃

σ{argmax Epi ,σui (k, ·, a−i )} ∈ Bi

Common priors information structure P ∈ ∆(K × T ), T = ∏i Ti

Interim Correlated Rationalizability

ICR0
i (ti ) = Ai

ICRm+1
i (ti ) = BRi (P(k , ICR

m
−i (t−i )|ti )))

ICR∞
i (ti ) = ∩mICR

m
i (ti )
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Rationalizable distribution

Rationalizable distribution µ ∈ ∆(K × B) induced by P

when (k , t) ∼ P, (k , ICR∞(t)) ∼ µ

Research questions:

1 What is the set of rationalizable distributions when P varies

2 What is a parametrized class of information structures that induce
all rationalizable distributions? (known: finite not enough, canonical
priors on Universal Type Space enough)

To answer these, we need to understand the (recursive) structure of ICR
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Email game

a b
a 1,1 -2,0
b 0,-2 0,0

Good

a b
a -1,-1 -2,0
b 0,-2 0,0

Bad
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Email game

a b
a 1,1 -2,0
b 0,-2 0,0

Good

a b
a -1,-1 -2,0
b 0,-2 0,0

Bad

ICR0
i = ab

{
ICRn+1

i = b if P(ICRn
j =b|t i ) + 1 > 2P(ICRn

j =ab, G|t i )
ICRn+1

i = ab otherwise
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Good date / bad date (or technology adoption)

a b
a 1, 2 0, 0
b 0, 0 2, 1

G

a b
a 0, 1 0, 0
b 2, 2 1, 0

B
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G

a b
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b 2, 2 1, 0

B

ICR1
1 = ab or b

ICR1
2 = ab or a

If ICR1
1 = ab then ICR2

1 = ab or a

If ICR1
2 = ab then ICR2

2 = ab or b
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Good date / bad date (or technology adoption)

a b
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G

a b
a 0, 1 0, 0
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b a
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Plan

1 Interim Correlated Rationalizability
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Stationary Canonical Automaton Markov Prior

Automaton: finite set of states Ω, action maps βi : Ω → Bi .

Prior: P ∈ ∆(K × ΩN), defines an information structure:

(k, (ωn)n) ∼ P,

sni = βi (ω
n), i informed of si = (sni )n

Markov: P ∈ ∆(K × ΩN) s.t.:

P(ωn+1|k,ω1 . . . ωn) = P(ωn+1|k ,ωn) P a.s.
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Stationary Canonical Automaton Markov Prior

Player i ’s information si = (sni )n is a sequence in BN
i

Canonical Prior P: si is i ’s ICR sequence itself, ie.

ICR(si ) = si P a.s.

Equivalent to the Obedience Constraints:{
s0i = Ai

smi = BRi ((P(k, s
m−1
−i |si ))

A CAMP is both

a distribution on nature and ICR hierarchies

an information structure implementing this distribution
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Stationary Canonical Automaton Markov Prior
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Stationary Canonical Automaton Markov Prior
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Stationary Canonical Automaton Markov Prior
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Stationary Canonical Automaton Markov Prior

Let m be the depth of the automaton, ie. the smallest value s.t. each
state is reached with positive pba. Let c be the lcm of cycle lengths.

Stationarity: For every k there is a distribution Pk on terminal nodes
st. for ℓ ≥ 1

P(ωm+ℓc=ω|k ,ωm+ℓc terminal) = Pk (ω)

In this case,
P(ω∞=ω|k) = Pk (ω)

and
µ(k , b) = P(k)Pk (β(ω)=b)

14 / 17



A revelation principle in SCAMP

Theorem

For every game, there exists an automaton st. rationalizable dist are

1 those on terminal nodes induced by all Pm ∈ ∆(K × Ωm) that
satisfy OC’s

2 the distributions induced by SCAMP

Rationalizable distributions

Convex polyhedron given by finitely many OC

Information structures: SCAMP

an information structure for every rat. dist.

based on contagion, generalizes email and global games
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Good date / Bad date

a b
a 1, 2 0, 0
b 0, 0 2, 1

p(G ) = 1/2

a b
a 0, 1 0, 0
b 2, 2 1, 0

p(B) = 1/2
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a b
a 1, 2 0, 0
b 0, 0 2, 1

p(G ) = 1/2

a b
a 0, 1 0, 0
b 2, 2 1, 0

p(B) = 1/2

SCAMP gives a characterization of the set of rationalizable distributions,
subset of ∆(K × {ab, a, b}2).

For visualization, focus on elements with support on K × {a, b}2.
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Good date / Bad date

a b
a 1, 2 0, 0
b 0, 0 2, 1

p(G ) = 1/2

a b
a 0, 1 0, 0
b 2, 2 1, 0

p(B) = 1/2

Extreme points

1
4 (G , a, a), 14 (G , b, b)
1
4 (B, a, b),

1
4 (G , b, a)

1
2 (G , a, a)
1
4 (B, a, a),

1
4 (G , b, a)

1
2 (G , b, b)
1
4 (B, a, a),

1
4 (G , a, b)
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Conclusion

ICR has a recursive structure on a proper automaton

Revelation principle: SCAMP

Canonical Prior information is ICR sequence

Markov on Automaton finitely many parameters

Stationary finitely many linear constraints

Tractable and rich model of simple information

Rationalizable distributions

Closure is a convex polyhedron

Are induced by SCAMP

Generalization of contagion argument
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