Robust Information Aggregation in Markets

Paris Game Theory Seminar

Rafael Veiel

MIT

April 4, 2022

- Investors face an investment choice y ∈ ℝ₊ with coordination motives: The more you invest the better for me.
- Investors have incomplete information about returns described by a common prior.
- Investors participate in a mechanism (implementable through market) to aggregate their private information prior to making investment decision.

• Investors participate in a **mechanism** to **aggregate their private information** prior to making investment decision.

Naive Mechanism: Public Message Board (E.g. Twitter)

- Everyone anonymously posts their private information.
- Incentive to exaggerate good news to incentivize more investment... Information Aggregation **not an equilibrium**.

Need something more complicated using

• Economic Idea: Signaling better information must be costly.

Definition, Questions and Answers

What are mechanisms that <u>robustly</u> aggregate agents' private information? <u>Informal Definition</u>: A public signal and transfer scheme that rewards/punishes different messages s.t. for every prior

- 1. Public signal aggregates messages and publicly reveals everyone's private information
- 2. (Incentive Compatibility) It is in everyone's best interest to report messages leading to 1.

(1) Can we implement it as the trading equilibrium in a separate Market?

Existence: Yes. Agents trade a token over multiple rounds while encoding their private information into its market price. Trades implement transfers satisfying 1. and 2..

(2) **Properties of such trading equilibria?**

<u>General Insight</u>: As the information of players varies, prices generated by any such trading equilibrium exhibit algebraic structure generated by primes.

How to think of this exercise?

We use a separate market for tokens to implement information aggregation...

- **Positive Modeling Exercise?** Is this in part what markets are being used for? Maybe but who knows...
- Normative Market Design/Engineering Exercise? Is this what markets should be used for if we want to reduce information frictions? Yes.
- Real life investment problem where such a market can be used: Crowd-sourcing platforms e.g. Kickstarter, large scale financial investments
- Could you implement information aggregation with non-market mechanisms? Maybe, but we don't know how...

Class of Investment Problems

- Finite set of agents I
- Each $i \in I$ has a cash budget $b_i \in \mathbb{R}$
- Given return parameter $\theta \in \Theta = \mathbb{N}$, $i \in I$ chooses investment y_i s.t.

$$\max_{y_i \leq b_i} u_i(y_i, \theta, y_{-i}, b_i)$$

Class of utilities studied

- Sufficiently Concave: $u_i(y_i, \theta, y_{-i}, b_i)$ increasing and concave $|\partial^2 u_i| \ge K$
- Coordination: $(\theta, y_{-i}, b_i) \mapsto (u_i(y_i, \theta, y_{-i}, b_i) u_i(y'_i, \theta, y_{-i}, b_i))$ increasing $\forall y_i > y'_i$
- Anonymity: $u_i(y_i, \theta, y_{-i}, b_i) = u_i(y_i, \theta, y_{\kappa(-i)}, b_i), \forall \kappa$ permutation of players

Nash Equilibrium of Investment Problem

Agents have **uncertainty** about payoff parameter $\theta \in \Theta = \mathbb{N}$

- Common priors $\mu \in \Delta(\Theta \times \prod_i S_i)$ on fixed signal space $(S_i)_i$,
- Let $X_i = \Delta(\Theta \times S_{-i})$ be the induced posteriors.

Posterior as Signal: for every (θ, x) , agent $i \in I$ privately observes posterior $x_i \in X_i$ Use redundant notation: $\mu(\theta, x_{-i}|x_i)$

Nash Equilibrium of Investment Problem

Agents have **uncertainty** about payoff parameter $\theta \in \Theta = \mathbb{N}$

- Common priors $\mu \in \Delta(\Theta \times \prod_i S_i)$ on fixed signal space $(S_i)_i$,
- Let $X_i = \Delta(\Theta \times S_{-i})$ be the induced posteriors.

Posterior as Signal: for every (θ, x) , agent $i \in I$ privately observes posterior $x_i \in X_i$ Use redundant notation: $\mu(\theta, x_{-i}|x_i)$

Nash Equilibrium of Investment Problem

Given μ , budgets $b_i \in \mathbb{R}_+$ and profile of utilities $(u_i)_{i \in I}$ an investment strategy is a profile of maps $(y_i \colon X_i \to (-\infty, b_i])_i$, s.t.

$$\mathbf{y}_i(\mathbf{x}_i) \in \arg \max_{\mathbf{y}_i \leq b_i} \mathbb{E} \big(u_i(\mathbf{y}_i, \theta, \mathbf{y}_{-i}(\mathbf{x}_{-i}), b_i) | \mathbf{x}_i \big), \quad \forall \ i, \mathbf{x}_i \in \mathbf{X}_i$$

Class of Information Structures studied \mathcal{E} : Every prior $\mu \in \mathcal{E}$ satisfies,

1. (No aggregate Uncertainty) for every $(\theta, x = (x_i)_i) \in \text{supp}(\mu)$,

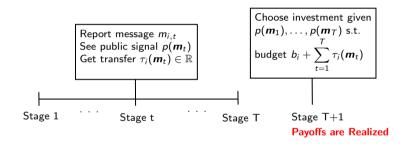
$$\bigcap_{i\in I} \{\hat{\theta} : \mu(\hat{\theta}|\mathbf{x}_i) > 0\} = \{\theta\}$$

2. (**Participation**) Full support where investment outcomes of every NE under μ are equal to investment in a NE where $\theta = 0$ is common knowledge.

Road Map

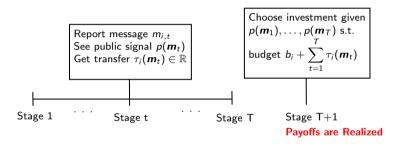
Dynamic Communication Mechanism

• Messages *M*, Public Signal $p: M' \to \mathbb{R}_+$, Transfers $\tau: M' \to \mathbb{R}'$, Stopping time *T*



Dynamic Communication Mechanism

• Messages *M*, Public Signal $p: M' \to \mathbb{R}_+$, Transfers $\tau: M' \to \mathbb{R}'$, Stopping time *T*



• Given history $(p(\boldsymbol{m}_1), m_{i,1}, \dots, p(\boldsymbol{m}_{t-1}), m_{i,t-1}) \in \boldsymbol{H}_i^{t-1}$, agent i chooses

1. Reporting strategies, $m_{i,t}: X_i \times H_i^{t-1} \to M$ 2. Investment strategy at period T + 1, $y_i: X_i \times H_i^T \to (-\infty, b_i + \sum_{t=1}^T \tau_i(\boldsymbol{m}_t)]_{12/4}$ Implementing Dynamic Communication Mechanisms (M, p, τ, T) with Market for Tokens:

- endow all agents with divisible tokens
- Messages *M* represent demand/supply schedules *M* for tokens
- **Public signal** *p* is the market price of the token
- Transfers τ represent the token trades at given price

 \rightarrow Imposes market clearing and measurability requirement on transfers

Dynamic Communication Mechanism (M, p, τ, T) admits a Market Implementation if...

(i) **Price is sufficient statistic:** Transfers only depend on m_{-i} through price:

$$au(m_i, m_{-i}) = \hat{\tau}(m_i, p(\boldsymbol{m}))$$

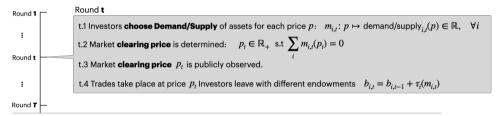
(ii) Market Clears:

$$\sum_i au_i(\boldsymbol{m}) = 0$$

From now on, restrict attention to Mech. with Market Implementation (Call them Market Mechanisms)

Market Implementation: Illustration

Market Implementation of Communication Mech: (M, p, τ, T)



Trading stops after **endogenous** stopping time **T** = $T(p_1, ..., p_T)$

Investors learn by observing prices $p_1, ..., p_T$ and leave with different endowments $b_{i,T}$

Round **7+1** Agents get utility expected utility:
$$\max_{y_i \in [0,b_{i,T}]} \mathbb{E}_{\mu} \left(u_i(y_i, \theta, y_{-i}) \mid m_{i,1}, p_1, \dots, m_{i,T}, p_T \right)$$

Equilibrium in Augmented Investment Problem

Nash Equilibrium in Reporting and Investment Strategies

 m_i

Reporting strategies, $(m_{i,t})_t$ and **Investment strategy** at period T + 1, y_i s.t.

$$\begin{aligned} \mathbf{y}_{i}(\mathbf{x}_{i}, \mathbf{h}_{i}^{T}) \in \arg\max_{\mathbf{y}_{i} \leq \mathbf{b}_{i}^{T}} \mathbb{E}(u_{i}(\mathbf{y}_{i}(\mathbf{x}_{i}, \mathbf{h}_{i}^{T}), \theta, \mathbf{y}_{-i}(\mathbf{x}_{-i}, \mathbf{h}_{-i}^{T}), \mathbf{b}_{i}^{T}) | \mathbf{x}_{i}, \mathbf{h}_{i}^{T}) \\ & \text{where } \mathbf{b}_{i}^{T} := \mathbf{b}_{i} + \sum_{t=1}^{T} \tau_{i}(\mathbf{m}_{t}) \\ \mathbf{f}_{t}(\mathbf{x}_{i}, \mathbf{h}_{i}^{t-1}) \in \arg\max_{\mathbf{m}_{i,t} \in \mathcal{M}} \mathbb{E}(u_{i}(\mathbf{y}_{i}(\mathbf{x}_{i}, \mathbf{h}_{i}^{T}), \theta, \mathbf{y}_{-i}(\mathbf{x}_{-i}, \mathbf{h}_{-i}^{T}), \mathbf{b}_{i}^{T}) | \mathbf{x}_{i}, \mathbf{h}_{i}^{t-1}), \quad \forall \ t \leq T \end{aligned}$$

Market Mechanism $(M, p, \tau, T) \in$ -Robustly Aggregates Information if...

∃ reporting strategy $(m_{i,t}: X_i \times H_i^{t-1} \to M)_{i,t}$ s.t. for every common prior $\mu \in \mathcal{E}$, (i) there is a NE with reporting strategy $(m_{i,t})_{i,t}$

(ii) for every draw θ , T is a **finite** stopping time satisfying

$$\mathcal{T} = \min\{t \in \mathbb{N} : \mu(\theta|\mathbf{x}_i, \mathbf{h}_i^{\mathcal{T}}) \geq 1 - \varepsilon\}$$

Market Mechanism (M, p, τ, T) Robustly Aggregates Information if...

it ε -Robustly Aggregates Information for all ε small enough.

Existence of Robust Aggregation

Lemma 1 (Existence)

There exists a Market mechanism that robustly aggregates information.

Construction in Simple Example: Uniform Beliefs

- $\Theta = \mathbb{N}$, $\mu(heta) > 0, \ \forall \ heta \in \Theta$,
- Three agents i_1 , i_2 , i_3 .
- Each *i* observes noisy signal $s_i = \theta + \epsilon_i$,

			Signals given $ heta$		
Signal Probability i_1	1/3		1/3		1/3
Signal set i_1	$\theta - 2$		heta		$\theta + 2$
Signal Probability i_2		1/3	1/3	1/3	
Signal set i_2		heta-1	heta	heta+1	
Signal Probability i 3		1/3	1/3		1/3
Signal set i_3		heta-1	θ		$\theta + 2$

- Endow every agent with infinitely many tokens,
- Identify Θ with prime numbers, where $\theta \mapsto P_{\theta}$, the θ -th prime
- Message Space: Token demand/supply schedule
 M = {m: p → token demand/supply at price p},
- Round 1:

$$m_i(p, s_i) = \underbrace{\frac{\alpha}{p} \sum_{\substack{\theta: \mu(\theta|s_i) > 0 \\ \text{Demand}}} \log P_{\theta}}_{\text{Demand}} - \underbrace{1}_{\text{(inelastic) supply}}, \quad \alpha > 0$$

- Endow every agent with infinitely many tokens,
- Identify Θ with prime numbers, where $\theta \mapsto P_{\theta}$, the θ -th prime
- Message Space: Token demand/supply schedule
 M = {m: p → token demand/supply at price p},
- Round 1:

$$m_i(\rho, s_i) = \underbrace{\frac{\alpha}{p} \sum_{\substack{\theta: \mu(\theta|s_i) > 0 \\ \text{Demand}}} \log P_{\theta}}_{\text{Demand}} - \underbrace{1}_{\text{(inelastic) supply}}, \quad \alpha > 0$$

• Market clearing, $p(\boldsymbol{m},s)$ is p s.t. $\sum_{i} m_i(p,s_i) = 0$,

For $\theta > 2$, $\epsilon_1 = \epsilon_2 = \epsilon_3 = 0$ we have Θ -information sets:

Information set i_1	heta-2	θ	$\theta + 2$
Information set i_2	heta-1	θ	heta+1
Information set i_3	$\theta - 2$	θ	heta+1

$$\frac{p(\boldsymbol{m})}{\alpha} = \frac{2\log P_{\theta-2} + \log P_{\theta-1} + 3\log P_{\theta} + 2\log P_{\theta+1} + \log P_{\theta+2}}{3}$$

 $e^{\frac{3}{\alpha}p_1(\boldsymbol{m})} = (P_{\theta-2})^2 \cdot P_{\theta-1} \cdot (P_{\theta})^3 \cdot (P_{\theta+1})^2 \cdot P_{\theta+2}$

For $\theta > 2$, $\epsilon_1 = \epsilon_2 = \epsilon_3 = 0$ we have Θ -information sets:

Information set i_1	heta-2	θ	$\theta + 2$
Information set i_2	$ heta- extsf{1}$	θ	heta+1
Information set i_3	$\theta - 2$	θ	heta+1

$$\frac{p(\boldsymbol{m})}{\alpha} = \frac{2\log P_{\theta-2} + \log P_{\theta-1} + 3\log P_{\theta} + 2\log P_{\theta+1} + \log P_{\theta+2}}{3}$$

 $e^{\frac{3}{\alpha}p_1(\boldsymbol{m})} = (P_{\theta-2})^2 \cdot P_{\theta-1} \cdot (P_{\theta})^3 \cdot (P_{\theta+1})^2 \cdot P_{\theta+2}$

- Prime factorization of $e^{\frac{3}{\alpha}\rho}$ reveals θ as prime with largest exponent
- Computationally easy for participants, very hard for outsiders.

Construction in Simple Example

What about non-uniform beliefs?

Construction in Simple Example: General Beliefs

- $\Theta = \mathbb{N}$, $\mu(heta) > 0, \ \forall \ heta \in \Theta$,
- Three agents i_1 , i_2 , i_3 .
- Each *i* observes noisy signal $s_i = \theta + \epsilon_i$,

Signal Probability i_1	$q_{i_1}^{ heta-2}$ heta-2	$rac{m{q}_{i_1}^ heta}{ heta}$	$\frac{q_{i_1}^{\theta+2}}{\theta+2}$
Signal set i_1	0-2	V	0 + 2
Signal Probability i 2	$q_{i_2}^{ heta-1}$	$q^{ heta}_{i_2}$ q	$\theta + 1$ i_2
Signal set i_2	heta-1	heta $ heta$ -	+ 1
Signal Probability i_3	$q_{i_3}^{ heta-1}$	$q_{i_3}^{ heta}$	$q_{i_3}^{ heta+2}$
Signal set i_3	heta-1	heta	$\theta + 2$

Signals given θ

Assume there is $n \in \mathbb{N}$ s.t. $\forall i, \ \hat{\theta}, \ \mu(\hat{\theta}|s_i) \in \{\frac{1}{n}, \ \frac{2}{n}, \dots, 1\}$

Trading Protocol: General Beliefs

- Endow every agent with infinitely many tokens,
- Identify Θ with prime numbers, where $\theta \mapsto P_{\theta}$, the θ -th prime
- Message Space: Token demand/supply schedule
 M = {m: p → token demand/supply at price p},
- Round 1:

$$m_{i,1}(p_1, s_i) = \underbrace{\frac{\alpha}{p_1} \sum_{\substack{\theta: \mu(\theta|s_i) > 0 \\ \text{Demand}}} \mu(\theta|s_i) \cdot \log P_{\theta}}_{\text{Demand}} - \underbrace{\underbrace{1}_{\text{(inelastic) supply}}, \quad \alpha > 0$$

Trading Protocol: General Beliefs

- Endow every agent with infinitely many tokens,
- Identify Θ with prime numbers, where $\theta \mapsto P_{\theta}$, the θ -th prime
- Message Space: Token demand/supply schedule
 M = {m: p → token demand/supply at price p},
- Round 1:

$$m_{i,1}(p_1, s_i) = \underbrace{\frac{\alpha}{p_1} \sum_{\substack{\theta: \mu(\theta|s_i) > 0 \\ \text{Demand}}} \mu(\theta|s_i) \cdot \log P_{\theta}}_{\text{Demand}} - \underbrace{\underbrace{1}_{\text{(inelastic) supply}}, \quad \alpha > 0$$

• Market clearing, $p_1(m_1, s)$ is p_1 s.t. $\sum_i m_{i,1}(p_1, s_i) = 0$,

Trading Protocol: Round 1

For $\theta > 2$, $\epsilon_1 = \epsilon_2 = \epsilon_3 = 0$ we have Θ -information sets:

Information set i_1	$\theta - 2$	θ	$\theta + 2$
Information set i_2	heta-1	θ	heta+1
Information set i_3	$\theta - 2$	θ	heta+1

Define Aggregate Belief Coefficient: $\kappa_{\theta}^1 := n \cdot \sum_{i \in I} \mu(\theta | s_i) \in \mathbb{N}$.

Trading Protocol: Round 1

For $\theta > 2$, $\epsilon_1 = \epsilon_2 = \epsilon_3 = 0$ we have Θ -information sets:

Information set i_1	$\theta - 2$	θ	$\theta + 2$
Information set i_2	heta-1	θ	heta+1
Information set i_3	$\theta - 2$	θ	heta+1

Define Aggregate Belief Coefficient: $\kappa_{\theta}^1 := n \cdot \sum_{i \in I} \mu(\theta | s_i) \in \mathbb{N}$.

$$\frac{p_1(\boldsymbol{m})}{\alpha} = \frac{\kappa_{\theta-2}^1 \log P_{\theta-2} + \kappa_{\theta-1}^1 \log P_{\theta-1} + \kappa_{\theta}^1 \log P_{\theta} + \kappa_{\theta+1}^1 \log P_{\theta+1} + \kappa_{\theta+2}^1 \log P_{\theta+2}}{3n}$$

$$\mathsf{e}^{\frac{3n}{\alpha} p_1(\pmb{m})} = (P_{\theta-2})^{\kappa_{\theta-2}^1} (P_{\theta-1})^{\kappa_{\theta-2}^1} (P_{\theta})^{\kappa_{\theta}^1} (P_{\theta+1})^{\kappa_{\theta+1}^1} (P_{\theta+2})^{\kappa_{\theta+2}^1}$$

• Prime factorization of $e^{\frac{3n}{\alpha}\rho_1}$ reveals union of information sets and κ^1

Trading Protocol: Rounds t > 1

• Need to repeat procedure over multiple rounds: Given histories h^{t-1} ,

Trading Protocol: Rounds t > 1

• Need to repeat procedure over multiple rounds: Given histories h^{t-1} ,

Aggregate Belief Coefficient: $\kappa_{\theta}^{t} := n \cdot \sum_{i \in I} \hat{\mu}(\theta | s_{i}, h_{i}^{t-1}) \in \mathbb{N}.$

$$m_{i,t}(p_t, s_i, h_i^{t-1}) = \underbrace{\frac{\alpha}{p_t} \sum_{\substack{\theta': \hat{\mu}(\theta'|s_i, h_i^{t-1}) > 0}} \hat{\mu}(\theta'|s_i, h_i^{t-1}) \cdot \log P_{\theta'}}_{\text{Demand}} - \underbrace{1}_{\text{(inelastic) supply}}$$

$$m_{i,t}(p_t, s_i, h_i^{t-1}) = \underbrace{\frac{\alpha}{p_t} \sum_{\substack{\theta': \hat{\mu}(\theta'|s_i, h_i^{t-1}) > 0}} \hat{\mu}(\theta'|s_i, h_i^{t-1}) \cdot \log P_{\theta'}}_{\text{Demand}} - \underbrace{1}_{\text{(inelastic) supply}}$$

Trading Protocol: Rounds t > 1

• Need to repeat procedure over multiple rounds: Given histories h^{t-1} ,

Aggregate Belief Coefficient: $\kappa_{\theta}^{t} := n \cdot \sum_{i \in I} \hat{\mu}(\theta | s_{i}, h_{i}^{t-1}) \in \mathbb{N}.$

$$m_{i,t}(p_t, s_i, h_i^{t-1}) = \underbrace{\frac{\alpha}{p_t} \sum_{\substack{\theta': \hat{\mu}(\theta'|s_i, h_i^{t-1}) > 0}} \hat{\mu}(\theta'|s_i, h_i^{t-1}) \cdot \log P_{\theta'}}_{\text{Demand}} - \underbrace{1}_{\text{(inelastic) supply}}$$

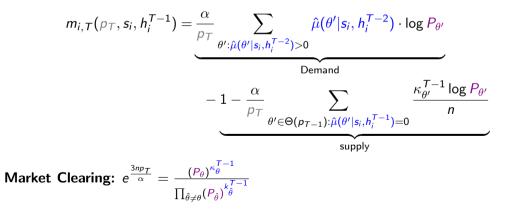
$$Market \text{ Clearing: } e^{\frac{3np_t}{\alpha}} = (P_{\theta-2})^{\kappa_{\theta-2}^t} (P_{\theta-1})^{\kappa_{\theta-2}^t} (P_{\theta})^{\kappa_{\theta}^t} (P_{\theta+1})^{\kappa_{\theta+1}^t} (P_{\theta+2})^{\kappa_{\theta+2}^t}$$

Proposition: Aggregate Belief Coefficients Converge

 $(\kappa^t)_t$ (sum of beliefs) converge as $t \uparrow \infty$.

Trading Protocol: Final Round

- Stop this procedure as soon as $||\kappa^{t-1}-\kappa^t||_\infty<\epsilon/n$
- Final round T: Let $\Theta(p_{T-1}) := \bigcup_{i \in I} \{\theta' : \mu(\theta' | x_i) > 0\}$



Trading Protocol: General Beliefs

- Prime Factorization gives union of information sets: Given $e^{3np/\alpha}$ we can recover the set of prime numbers factoring it.
- Bayesian Learning if everyone follows protocol:

The state θ is the unique prime largest (positive) exponent in factorization of $e^{3np_T/\alpha}$

Off Eq.-path Learning? Under a deviation such a prime may not exist, in which case we assume agents do not update beliefs.

Discouraging Deviations

- Is the trading protocol an equilibrium for this prior? Argument for uniform beliefs:
- Fact (Bertrand-Chebyshev theorem): $\log P_m \log P_{m-1} \le \log 2$.

Local Deviations for *i*:

- Reporting information set realized under θ + 1, Monetary Cost: At least α log 2 Monetary Benefit: At most y^{*}_{-i}(θ + 1) - y^{*}_{-i}(θ) if all players learn θ + 1
- Reporting information set realized under θ − 1, Monetary Cost: At least y_{-i}(θ) − y^{*}_{-i}(θ − 1) if information aggregation succeeds Monetary Benefit: At most α log 2
- Globally bounded concavity: $\exists \alpha$ discouraging deviations locally, then implies no global deviations.

Construction in General

What features made this example so simple?

- Infinitely supported beliefs $\rightarrow \varepsilon$ aggregation
- Many players with same information \rightarrow Repeated mixed strategy until information aggregation succeeds
- Signals are not identified by θ, i.e. there is no complete order on state space Θ × X representing preferences of all agents, → One round for every ordered subset

Relaxing any of them requires multiple trading rounds but idea is the same: Aggregation achieved by players jointly controlling prime factorization of market price.

Algebraic Structure of Equilibria

Interesting Information Structures $\mathcal{E}^* \subseteq \mathcal{E}$

• Need at least 3 players to pin down state: There is $\delta > 0$ so that for all pairs $i_1, i_2 \in I$, $\mu(\theta | x_{i_1}, x_{i_2}) < 1 - \delta$

A binary operation \oplus on priors $\mathcal{E}^* \subseteq \mathcal{E}$ is <u>monotonic</u> if for any priors $\mu_1, \mu_2 \in \mathcal{E}^*$,

(i) Better News: $\forall \ \ell \in \{1,2\}, \ \forall \ x_i, \forall \ i$,

 $\operatorname{marg}_{\Theta}\mu_{\ell}(\cdot|x_i) \preceq_{\operatorname{FOSD}} \operatorname{marg}_{\Theta}(\mu_1 \oplus \mu_2)(\cdot|x_i)$, strict for some agent *i*

Generator

A generator of (\mathcal{E}^*, \oplus) is a subset $E \subseteq \mathcal{E}^*$ so that every $\mu \in \mathcal{E}^*$ can be written as a finite sum \oplus of elements in E.

Algebraic Structure of Equilibria

Fix a Market mechanism, with robust IA-equilibrium $\sigma = (m, y)$ so that for all other such equilibria σ' and all priors μ , $\mathbb{E}_{\mu}(T(\theta, x, \sigma)) \leq \mathbb{E}_{\mu}(T(\theta, x, \sigma'))$.

• σ induces a mapping from common priors to observable prices in every round:

$$p_{t,\sigma}\colon \mathcal{E}^* o \mathcal{P}_t \subseteq \mathbb{R}_+$$

 Every monotonic binary operation on priors ⊕ induces a binary operation ⊗ on price histories:

$$p_{t,\sigma}(\mu_1)\otimes p_{t,\sigma}(\mu_2):=p_{t,\sigma}(\mu_1\oplus\mu_2)$$

Theorem 1: Prime generator

For every ε -robust information aggregation equilibrium σ and round t, there is a countable set $\mathbb{P}_t \subseteq \mathcal{P}_t$ s.t. for every monotonic \oplus and every $\mu \in \mathcal{E}^*$, $p_{t,\sigma}(\mu)$ can be <u>uniquely</u> written as a finite \otimes -product of elements in \mathbb{P}_t .

Explaining the Statement and Proof Idea

- Robust information aggregation must consist of controlling the prime factorization of the price
 - Why? Two Steps
- 1. There could be multiple players, each with something unique to say which needs to be recovered from the price:
- **Uniqueness property:** It should not be possible to write her message as a combination of other agent's message (avoid confounding)
- Primes represent a minimal way of encoding information in a robust way.
- 2. Why can we only use this minimal way in Equilibrium?
- **Minimality property:** Reporting is costly, if there are two ways of encoding the same information, only use the cheapest.

Conclusion

- Robust information aggregation through a separate token market is possible
- Agents can only do it by jointly controlling prime factorization of market price of the token

Appendix: Beliefs

Second Order Information Sets of i_1

Information set i_1		<i>x</i> – 2			<i>x</i> +	- 2		
Information set i_2	x – 3	x - 2	x-1					
Information set i_3	x – 4	<i>x</i> – 2	x-1					
Information set i_1		x – 2				<i>x</i> + 2		
Information set i_2					x + 1	<i>x</i> + 2	<i>x</i> + 3	
Information set i_3				x		<i>x</i> + 2	<i>x</i> + 3	

Appendix: Discouraging Deviations

Deviations of i_1

Information set i_1	$x-2 \mapsto x-1$	$x + 2 \mapsto x + 3$
Information set i_2	x-3 x-2 x-1	
Information set i_3	x-4 $x-2$ $x-1$	
Information set i_1	$x - 2 \rightarrow x - 1$	$x + 2 \mapsto x + 3$
Information set i_2		x+1 $x+2$ $x+3$
Information set i_3		x x+2 x+3