Strategic Type Spaces

Olivier Gossner (CNRS-X-LSE), Rafael Veiel (MIT) One World Game Theory Seminar

March 6, 2022

Universal Representation of Payoff-Relevant Info

• Describe **all** players' information:

```
Harsanyi type spaces (HTS) \rightarrow Universal Type Space (UTS)
```

- UTS \cong hierarchies of beliefs: very big space, not big enough for all solution concepts
- Fixed **game** and **solution concept** (Rationalizability):

What is a **minimal** universal representation?

Universal Representation of Payoff-Relevant Info

What we do:

- Existence + Uniqueness of minimal universal representation for finite game and rationalizability ≅ hierarchies of best-replies
- Show it has recursive structure on a finite set.

- Finite set of States of Nature: K
- Finite set of players: I

Harsanyi Type Space (HTS), $(T_i, \pi_i)_{i \in I}$

- A topological space of types $\forall i \in I, T_i, T_{-i} := \prod_{j \neq i} T_j$
- continuous map: $\forall i \in I, \pi_i : T_i \to \Delta(K \times T_{-i})$ with weak topology on $\Delta(K \times T_{-i})$

Universal Type Space

Universal Type Space (UTS), (Mertens and Zamir 85)

HTS $(T_i^*, \pi_i^*)_i$ so that for every HTS $(T_i, \pi_i)_i$ and player *i* there exist continuous maps $\xi_i: T_i \to T_i^*$ so that the diagram below commutes

$$egin{array}{lll} T_i & \stackrel{\pi_i}{\longrightarrow} \Delta(K imes T_{-i}) \ & \downarrow^{\xi_i} & \operatorname{id} \downarrow & \downarrow^{\xi_{-i}} \ & \Gamma_i^* & \stackrel{\pi_i^*}{\longrightarrow} \Delta(K imes T_{-i}^*) \end{array}$$

Lemma 1, (Mertens and Zamir 85)

- (Existence and Uniqueness) UTS exists and is unique up to homeomorphisms
- (Characterization) HTS $(T_i^*, \pi_i^*)_i$ is UTS if and only if for every i, π_i^* is a homeomorphism

Type Space Quotients

Type Space Quotient (TSQ)

A TSQ $(S_i, \psi_i)_{i \in I}$, where for every *i*, S_i is a topological space and for every HTS $(T_i, \pi_i)_i$ there exist continuous map $\eta_i : T_i \to S_i$ so that

$$egin{array}{lll} T_i & \stackrel{\pi_i}{\longrightarrow} \Delta(K imes T_{-i}) \ & & & & & \downarrow^{\eta_i} & & & \downarrow^{\eta_{-i}} \ & & & & \downarrow^{\eta_{-i}} \ S_i & \stackrel{\psi_i}{\longleftarrow} \Delta(K imes S_{-i}) \end{array}$$

Verbal Explanation:

 η_i coarsens types and beliefs of player *i* into equivalence classes S_i ψ_i : many beliefs correspond to same s_i , (UTS had homeomorphism) Diagram: If beliefs of t_i, t'_i on $K \times \eta_{-i}(T_{-i})$ coincide then $\eta_i(t_i) = \eta_i(t'_i)$

- Fix finite action sets $(A_i)_i$, payoffs $u: K \times \prod_i A_i \to \mathbb{R}^I$
- Interim Correlated Rationalizability: $ICR_i : T_i \rightarrow 2^{A_i}$ so that for every $t_i \in T_i$ $ICR_i(t_i)$ is the set of **best-replies** to beliefs of the form

$$p(k, \mathbf{a}_{-i}) = \int_{\mathbf{K} \times \mathbf{T}_{-i}} \sigma(\mathbf{a}_{-i} | k, t_{-i}) \ \pi_i(k, \mathrm{d}t_{-i} | t_i)$$

for any random selection $\sigma(\cdot|k, t_{-i}) \in \Delta(ICR_{-i}(t_{-i}))$ for all t_{-i}

Best-Response Map

Best-Response map, $(BR_i)_{i \in I}$

- $\forall i \in I, A_i := 2^{A_i}$
- Best-response map: $\mathrm{BR}_i \colon \Delta(\mathcal{K} \times \mathcal{A}_{-i}) \to \mathcal{A}_i \text{ s.t. } \mathrm{BR}_i^{-1}(a_i) \text{ convex } \forall a_i \in \mathcal{A}_i$

Lemma 2: ICR as Fixed Point of a Best-Response map

For every finite action sets $(A_i)_i$, payoffs $u : K \times \prod_i A_i \to \mathbb{R}^l$, every player *i* there is a best response map BR_i with $A_i = 2^{A_i}$ so that for every HTS (T_i, π_i) ,

Strategic Type Space

BR-Orbit (for ICR)

A BR-orbit on a TSQ $(S_i, \psi_i)_{i \in I}$ is a sequence $(\sigma^m)_{m=0,1,\dots}$ s.t. $\forall i, \sigma_i^0(S_i) = \{A_i\}$ is constant and for all m,

$$egin{array}{lll} \Delta(\mathcal{K} imes oldsymbol{S}_{-i}) & \stackrel{\psi_i}{\longrightarrow} oldsymbol{S}_i \ & \mathrm{id} igg \downarrow & \int \sigma^m_{-i} & \int \sigma^{m+i}_i \ \Delta(\mathcal{K} imes \mathcal{A}_{-i}) & \stackrel{\mathrm{BR}_i}{\longrightarrow} oldsymbol{\mathcal{A}}_i \end{array}$$

• S_i must be rich enough so that BR_i is measurable for all σ_{-i}^m

Strategic Type Space (for ICR)

The STS is the coarsest TSQ $(S_i, \psi_i)_{i \in I}$ that admits a BR-orbit starting with constant map $\sigma^0 = \{A\}$.

Existence and Uniqueness

Let $(S_i, \psi_i)_{i \in I}$ be a TQS admitting a BR-orbit $(\sigma^m)_{m=0,1,...,r}$

- Define set of BR-hierarchies $S_i^* := \{(\sigma^m_i(s_i))_m : s_i \in S_i\} \subseteq \mathcal{A}^{\mathbb{N}}$
- $\forall p \in \Delta(K \times S^*_{-i})$ define the map $\psi_i^* \colon \Delta(K \times S^*_{-i}) \to S^*_i$

 $\psi_i^*(p) := (\mathrm{BR}_i(\mathrm{marg}_{K,m}(p)))_m$

Lemma 3: Existence and Uniqueness

- $(S_i^*, \psi_i^*)_i$ is a Strategic Type Space and every STS is homeomorphic to it.
- There is $\beta \colon S^* \to \mathcal{A}$ s.t. for every HTS (T, π) , $\beta \circ \eta^*(t) = ICR(t)$.

Finite Recursive Representation

Let $(S_i^*, \psi_i^*)_{i \in I}$ be the STS, the shift operator, **shift**: $(a^1, a^2, a^3, \dots) \mapsto (a^2, a^3, \dots)$

For every $\boldsymbol{a}^m = (a^1, \dots, a^m) \in \mathcal{A}^m$, define truncated orbits

$$\mathcal{A}^{m}(S, \boldsymbol{a}^{m}) := \left\{ (s^{n})_{n \geq m} : s \in S^{*} \text{ s.t. } s^{n} = a^{1}, \dots, s^{m} = a^{m} \right\} \subseteq \mathcal{A}^{\mathbb{N}}$$
$$\mathcal{A}(S) := \left\{ \mathcal{A}(S, \boldsymbol{a}^{m}) : \boldsymbol{a}^{m} \in \mathcal{A}^{m}, \ m \in \mathbb{N} \right\}$$

Define binary relation on truncated orbits: $\forall A, A' \in \mathcal{A}(S)$,

$$\mathbf{A} \preceq \mathbf{A}' \iff \mathbf{A} \subseteq \{ \mathsf{shift}(\mathbf{a}') : \mathbf{a}' \in \mathbf{A}' \}$$

Theorem 1: Finite Recursive Representation of STS

- The set of truncated orbits $(\mathcal{A}(S), \preceq)$ is finite.
- S^* is homeomoprhic to the set of \leq -monotone sequences on $\mathcal{A}(S)$

Conclusion

- Proved **Existence** + **Uniqueness** of minimal universal representation of payoff-relevant information.
- Showed that the space is generated through **recursion** by a binary relation on a **finite set** of truncated orbits.
- **Comparison to UTS**: UTS can only be generated through recursion on the UTS itself!

Appendix

Construction of BR-hierarchies

BR-hierarchies

 S_i^1

:

.

.

$$= \{A_i^0\}$$
 $T_i^1 = \Delta(K)$

$$S_i^2 = \{ \mathrm{BR}_i(p) : p \in \Delta(K \times S_{-i}^1) \}$$

÷

:

$$T_i^1 = \Delta(K)$$

$$egin{aligned} S^m_i = \{(ext{BR}_i(p_n))_{n \leq m} : \exists \ p \in \Delta(\mathcal{K} imes S^{m-1}_{-i}) \ ext{s.t.} \ orall n < m, p_n = ext{marg}_{\mathcal{K},n}(p) \} \end{aligned}$$

$$egin{aligned} T^{m+1}_i = \{(t^m_i,t^{m+1}_i) \in T^m_i imes \Delta(K imes T^m_{-i}): \ & \mathsf{marg}_K(t^2_i) = t^1_i\} \end{aligned}$$

Strategic Type Space

For all $p \in \Delta(K \times S^{m-1}_{-i})$, define $\psi^m(p) := (BR_i(marg_{K,n}(p)))_{n < m}$

Lemma 4: Strategic Type Space

• For every *i* the sequence $(S_i^m, \psi_i^m)_m$ extends uniquely to a limit (S_i^*, ψ_i^*) s.t. $\forall m$,

- Limit profile $(S_i^*, \psi_i^*)_i$ is a minimal Strategic Type Space
- Every other minimal STS is homeomorphic to $(S_i^*, \psi_i^*)_i$
- The BR-orbit $(\sigma^m)_m$ is given by coordinate projections.

Coarsest Type Space Quotient

Coarser Type Space Quotient

A STS $(S_i^*, \psi_i^*)_{i \in I}$ is **coarser** than $(S_i, \psi_i)_{i \in I}$ if for every *i* there exist continuous surjection $\zeta_i \colon S_i \to S_i^*$ so that